997 resultados para Fundamental number
Resumo:
Four West Malaysian shrew populations of the genus Crocidura were investigated through their karyotype and allozyme variations, and, in part, by interfertility experiments. Two different karyotypes characterize these shrews. The first, restricted to the Cameron Highlands (Peninsular Malaysia), invariably has 2n = 40 chromosomes but a varying fundamental number (FN = 54-58). The second karyotype shows a fundamental number of 62-68 and a polymorphic chromosomal number of 2n = 38, 39 or 40, a rare event in the genus Crocidura. Thus both can be distinguished by either a low or a higher number of meta- and submetacentric elements. In heterospecific breeding experiments, mutual avoidance was observed suggesting prezygotic barriers, whereas intraspecific pairs produced 13 liters (mean 2.1 young). Furthermore, our biochemical results indicate that both karyotypes correspond to a relatively ancient separation (Nei's D = 0.354), an amount of genetic differentiation comparable to the distance separating them from the West Palearctic C. russula (D = 0.429-0.583). In contrast, conspecific island and mainland Malaysian shrews possessing the second karyotype had only one fixed allelic difference over the 35 loci surveyed. The problem of naming the two biological species remains unsolved and requires further comparative investigations.
Resumo:
We karyotyped and sequenced 1,140 base pairs of the mitochondrial DNA cytochrome b of a specimen of Zarudny's rock shrew (Crocidura zarudnyi) from Baluchestan, southeastern Iran, to clarify its cytogenetic and molecular relationships with other Eurasian species of Crocidura. According to the karyotype (2N = 40, FN = 50), Zarudny's rock shrew belongs to the group of the lesser white-toothed shrew (C. suaveolens), which is different from other known crocidurine karyotypes, considering the combination of the diploid and fundamental number of chromosomes. Molecular results revealed that C. zarudnyi is included in a monophyletic clade with the C. suaveolens group, where it is a sister taxon to the others (mean Kimura 2-parameter distance = 9.7%).
Resumo:
Cytogenetics analyses in fish are important because they compose a private group among the vertebrates, occupying a central position in the animal evolution. The Perciforms Order, dominant in the marine and freshwater environment, it constitutes a model potentially useful in the genetic evaluation of populations, as well as in the understanding of its evolutionary processes. In spite of this, cytogenetics studies in this great group is scarce, above all for the inhabitants of sandy bottom and pelagics habits. The present work proposed to contribute for the cytogenetic characterization of nine species of fish marine of sandy bottom of the coast of Rio Grande do Norte (Brazil), identifying the evolutionary patterns related to the karyotype in these species and the existence of filogenetics affinities between them and other Perciformes. The animals were collected in the beaches of the Redinha, Ponta Negra and Búzios (Coast of Rio Grande do Norte) and in Saint Peter and Saint Paul Archipelago. Later on they were submitted to the cytogenetics technical that consist of mitotic estimulation, obtaining of mitotics chromosomes, proceeded by techniques of conventional coloration (Giemsa) and chromosomic bands (Ag-RONs and C band). Diploid number and fundamental number equal to 48 were observed in most of the species: Menticirrhus americanus, Ophioscion punctatissimus, Pareques acuminatus (Sciaenidae); Chloroscombrus chrysurus (Carangidae); Echeneis sp. 2 (Echeneidae); Archosargus probatocephalus (Sparidae) and Orthopristis ruber (Haemulidae). Trachinotus goodei (NF=52) (Carangidae) and Echeneis sp. 1 (Echeneidae) (NF=54) presented variation in NF, staying constant a diploid number equal to 48. RONs was situated in pericentromeric position in whole the scianids, and in the species Echeneis sp. 2 (22° pair), O. ruber and A. probatocephalus (1° pair), coinciding with great heterocromatics blocks in M. americanus (1° pair), P. acuminatus (2° pairl) and O. ruber (1° pair). RONs was also located in the telomeric area of the short arm of the 5° and 11° acrocentrics pairs in T. goodei, 4° and 19° pairs of C. chrysurus, 1° pair (sm) of Echeneis sp. 1. The C band detected centromeric blocks in most of the chromosomes of the species of Sciaenidae, Carangidae and Echeneidae, with great blocks in A. probatocephalus (4° pair). Heterocromatic blocks in telomeric areas in submetacentrics of Echeneis sp. 1, and pericentromerics in M. americanus (1° and 8° pairs), O. punctatissimus (1° pair) and P. acuminatus (2° pair) were also observed. It is noticed a marked conservatism cromossomic in the species of the family Scianidae and Haemulidae in what says respect to the number of acrocentrics chromosomes and the location of RONs. Even so it is outstanding the presence of heterocromatinization events during the karyotypic evolution of this family. Already in the families Sparidae and Carangidae, the obtained results reaffirm examples of small variations structural resultants of inversion and translocation Robertsonian, as important mechanisms of diversification karyotipical, as well as a pattern numerical evolutionary conserved, also observed in representatives of Echeneidae of Atlantic in relation to Pacific. The presence of RONs multiple, observed in the species T. goodei and C. chrysurus seems to represent a character derived in the family Carangidae. The results for the species O. ruber and A. probatocephalus suggest the presence of possible geographical or climatic barriers among populations of NE of Brazil in relationship the one of the SE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
As treze espécies de Phaneropterinae estudadas neste trabalho podem ser organizadas em quatro diferentes grupos tomando como referência suas características cariotípicas. Todas possuem sistema cromossômico de determinação sexual do tipo X0(masculino), XX(feminino). O cromossomo X é sempre heteropicnótico durante a prófase I, tem dimensões e morfologias variáveis nas diferentes espécies mas é sempre o maior elemento do cariótipo, além de apresentar segregação precoce durante a anáfase I. O número cromossômico fundamental (NF) varia de 21 a 32. Neste trabalho, são discutidos os significados evolutivos das variações cariotípicas encontradas e suas correlações filogenéticas com outros grupos de espécies pertencentes à mesma subfamília.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The chromosome constitution of five males and three females of the Pampas deer (Ozotoceros bezoarticus) coming mainly from the region of Corumba-MS, was studied. The diploid number of the species was reconfirmed as 68 chromosomes with Fundamental Number (FN) = 74. The X chromosome was the largest and the Y the smallest in the genome. Constitutive heterochromatin demonstrated by C banding was present in the centromeric region of all chromosomes, except in pair number two, which had none, and in chromosome X which had a stained region in the telomere on the long arm, Chromosomes pairs 3 and 4 bore Ag-NORs. The banding patterns differed from those of previous reports for this species. This may be due to subspecific differences.
Resumo:
Blood from eight specimens of both sexes of the alligator Caiman latirostris was collected and incubated in culture medium. Conventional as well as chromosomal banding (C and NOR) techniques were used.The diploid number was determined as 42, being 24 telocentric, 12 metacentric and six submetacentric, with real lengths varying from 1.49 to 6.08, 1.63 to 3.71, and 2.41 to 3.19 mum, respectively. The fundamental number was 60. About 81% of the chromosomes were small and 19% medium in size. NOR-banding was presented for the first time for this species and it was verified that only one submetacentric pair (no. 20) was marked on arm q, and under conventional staining it presented a secondary constriction. There was no association between NOR marked chromosomes.
Resumo:
The chromosomic constitution of the Marsh Deer (Blastocerus dichotomus) was studied in 18 males and 18 females, mainly from the Tiete river basin in Sao Paulo State, Brazil. The species diploid number was determined to be 66 chromosomes and the fundamental number (FN), 74. The X and the Y were the largest and the smallest chromosome, respectively. Large amounts of the constitutive heterochromatin marked by the C band were located in the centromeric region of all the acrocentric chromosomes. The first chromosome pair was not marked and the second and third pairs showed weak centromeric markings. The X chromosome showed two strong telomeric markings while the Y was C band negative. Chromosomes four and five were the NOR carriers. Polymorphism for this band was observed in pair four. The results of this study are in agreement with other reports in the literature, in spite of the different origin of the animals.
Resumo:
Molossidae species, Cynomops abrasus (2n = 34, fundamental number, FN = 64), Eumops auripendulus (2n = 42, FN = 62), Molossus rufus (2n = 48, FN = 64), Molossops temminckii (2n = 48, FN = 64), and Nyctinomops laticaudatus (2n = 48, FN = 64), and Phyllostomidae species, Phyllostomus discolor (2n = 32, FN = 60), have karyotypes with different chromosome and fundamental numbers, different localization of constitutive heterochromatin, and different numbers and location of nucleolar organizer regions (NORs). Fluorescence in situ hybridization with a human probe of the telomeric sequence (TTAGGG)n produced fluorescent signals in telomeric regions of the six bat species' chromosomes; in E. auripendulus, pericentromeric signals were also observed in the acrocentric and subtelocentric chromosomes. A relationship between telomeric sequences and NORs, and between telomeric sequences and constitutive heterochromatin was detected in chromosomes bearing NORs in C. abrasus, M. temminckii, N. laticaudatus, and P. discolor. No interstitial signal was observed in the meta- or submetacentric chromosomes of these species. ©FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)