888 resultados para Functions, Abelian.
Resumo:
Errata slip inserted.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Vita.
Resumo:
Computer-scanned reproduction using Xerox software and equipment.
Resumo:
Computer-scanned reproduction using Xerox software and equipment.
Resumo:
"Separatabdruck aus Nr. 15 der Nachrichten von der Kön. Gesellschaft der Wissenschaften und der Universität zu Göttingen v. J. 1889."
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Mode of access: Internet.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Multipliers on Spaces of Functions on a Locally Compact Abelian Group with Values in a Hilbert Space
Resumo:
2000 Mathematics Subject Classification: Primary 43A22, 43A25.
Resumo:
We study the natural problem of secure n-party computation (in the computationally unbounded attack model) of circuits over an arbitrary finite non-Abelian group (G,⋅), which we call G-circuits. Besides its intrinsic interest, this problem is also motivating by a completeness result of Barrington, stating that such protocols can be applied for general secure computation of arbitrary functions. For flexibility, we are interested in protocols which only require black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our investigations focus on the passive adversarial model, where up to t of the n participating parties are corrupted.