995 resultados para Functionally graded polymeric nanocomposites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient heat conduction in a functionally graded graphite/polymer nanocomposite (FGN) plate is analyzed using finite element method (FEM). Stepwise gradient structure consisted of four different nanocomposite layers with 0, 5, 10 and 20 wt% of graphite. Thermal conductivity and specific heat capacity of the individual layers were determined using C-Therm TCi Thermal Conductivity Analyzer (Canada) in temperature range of -20 to 100 °C. Temperature history and temperature distribution across the thickness of the plate with two different configurations for two positive and negative temperature gradients are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a finite element-based model was developed to investigate the mechanical behaviour of functionally graded carbon nanofibre (CNF)/phenolic nanocomposites. Four functionally graded nanocomposites (FGNs), a non-graded nanocomposite (NGN), and a pure phenolic with the same geometry and total carbon nanofibre content were designed and fabricated. Flexural tests were conducted to validate the proposed finite element model. Close agreement was obtained between experimental results and numerical predictions. The results showed that flexural modulus can be improved about 45% by controlling the CNF content across the thickness of the samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research introduced the innovative concept of controlling the composition in nanocomposites for optimizing the mechanical performance; as well as tailoring the thermal and electrical properties for multi-functional applications. It led to the development of novel lighter stronger materials for use in engineering applications such as automotive body and mining equipment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we are focusing on the investigation of the effects of gradient patterns on mechanical behavior of functionally-graded carbon nanotube-reinforced nanocomposites and considering typical beams made of such nanocomposites. Both analytic and finite element-based numerical models were developed. Analytic model was developed based on the first-order shear deformation and Timoshenko beam theories meanwhile finite element models were developed using Abaqus in conjunction with user-defined subroutines for defining the continuously gradient material properties for different gradient patterns. Position-dependent elastic modulus equations for four continuously graded patterns were studied. A nongraded pattern was used for benchmarking with the same geometry and total carbon nanotube (CNT) contents. For validation and verification, the results on both deflection and stress of these nanocomposite beams were analyzed, which clearly showed high influence from gradient patterns on these mechanical behaviors of such beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new beam element is developed to study the thermoelastic behavior of functionally graded beam structures. The element is based on the first-order shear deformation theory and it accounts for varying elastic and thermal properties along its thickness. The exact solution of static part of the governing differential equations is used to construct interpolating polynomials for the element formulation. Consequently, the stiffness matrix has super-convergent property and the element is free of shear locking. Both exponential and power-law variations of material property distribution are used to examine different stress variations. Static, free vibration and wave propagation problems are considered to highlight the behavioral difference of functionally graded material beam with pure metal or pure ceramic beams. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-point bending behavior of sandwich beams made up of jute epoxy skins and piecewise linear functionally graded (FG) rubber core reinforced with fly ash filler is investigated. This work studies the influence of the parameters such as weight fraction of fly ash, core to thickness ratio, and orientation of jute on specific bending modulus and strength. The load displacement response of the sandwich is traced to evaluate the specific modulus and strength. FG core samples are prepared by using conventional casting technique and sandwich by hand layup. Presence of gradation is quantified experimentally. Results of bending test indicate that specific modulus and strength are primarily governed by filler content and core to sandwich thickness ratio. FG sandwiches with different gradation configurations (uniform, linear, and piecewise linear) are modeled using finite element analysis (ANSYS 5.4) to evaluate specific strength which is subsequently compared with the experimental results and the best gradation configuration is presented. POLYM. COMPOS., 32:1541-1551, 2011. (C) 2011 Society of Plastics Engineers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionally Gradient Materials (FGM) are considered as a novel concept to implement graded functionality that otherwise cannot be achieved by conventional homogeneous materials. For biomedical applications, an ideal combination of bioactivity on the material surface as well as good physical property (strength/toughness/hardness) of the bulk is required in a designed FGM structure. In this perspective, the present work aims at providing a smooth gradation of functionality (enhanced toughening of the bulk, and retained biocompatibility of the surface) in a spark plasma processed hydroxyapatite-alumina-zirconia (HAp-Al2O3-YSZ) FGM bio-composite. In the current work HAp (fracture toughness similar to 1.5 MPa.m(1/2)) and YSZ (fracture toughness similar to 62 MPa.m(1/2)) are coupled with a transition layer of Al2O3 allowing minimum gradient of mechanical properties (especially the fracture toughness similar to 3.5 MPa.m(1/2)).The in vitro cyto-compatibilty of HAp-Al2O3-YSZ FGM was evaluated using L929 fibroblast cells and Saos-2 Osteoblast cells for their adhesion and growth. From analysis of the cell viability data, it is evident that FGM supports good cell proliferation after 2, 3, 4 days culture. The measured variation in hardness, fracture toughness and cellular adhesion across the cross section confirmed the smooth transition achieved for the FGM (HAp-Al2O3-YSZ) nanocomposite, i.e. enhanced bulk toughness combined with unrestricted surface bioactivity. Therefore, such designed biomaterials can serve as potential bone implants. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, size dependent linear free flexural vibration behavior of functionally graded (FG) nanoplates are investigated using the iso-geometric based finite element method. The field variables are approximated by non-uniform rational B-splines. The nonlocal constitutive relation is based on Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG plate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of the FG nanoplate. From the detailed numerical study it is seen that the fundamental frequency decreases with increasing gradient index and characteristic internal length. (c) 2012 Elsevier B.V. All rights reserved.