920 resultados para Functionalized Carbon Nanotubes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L(-1) KNO(3) with pH adjusted to 2.25 with HNO(3), an accumulation potential of 0.3V vs. Ag/AgCl (3.0 mol L(-1) KCl) for 300 s and a scan rate of 100 mV s(-1). Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 x 10(-8) to 1.60 x 10(-5) mol L(-1) with a detection limit of 1.00 x 10(-8) mol L(-1). The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-covalent functionalization of CoMoCAT single-wall carbon nanotubes (SWNTs) by bovine serum albumin (BSA) was achieved. Photoluminescence spectra for the functionalized nanotubes showed good dispersion by BSA functionalization. Raman spectra were taken for the sonicated SWNT-BSA solution to establish the signal versus concentration correlation. Cellular uptake of functionalized carbon nanotubes by mouse macrophage (RAW264.7) was then investigated using Raman spectroscopy. For a seeding density of 50% confluence in a culture solution containing 10 μg/ml of BSA-SWNTs, uptake of 200 μg/ml by the macrophages was recorded after 23hr incubation, indicating an active uptake of SWNTs. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we prepare carbon nanotubes modified with ammonium persulfate, very short carbon nanotubes with 50-100 nanometer length was obtained, and the higher P potential of 52 mV was detected, these supporting the successful modification. HeLa cells were irradiated with P rays via adding or absent above functionalized carbon nanotubes (f- WCNTs) into cell culture medium with different concentration and radiation dosage. Confocal microscopy images and fluorescence-labeled DNA detection verified the successfully pure multi-walled carbon nanotubes (p-WCNTs) and f-WCNTs penetrated into cells. Compared with pure radiation, by MTT test, f-WCNTs induced cell death markedly with about 8.7 times higher than former one under little dose of radiation; meanwhile, no obvious toxicity was observed both in p-WCNTs and f-WCNTs without of radiation exposure. We hypothesized that large amount of hydroxyl and carbonyl organs on the surface of very short f-WCNTs changed into free radicals result from radiations led cell damage. These implied that f-WCNTs could be regarded as a new radiosensitizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionalized carbon nanotubes (CNTs) using three aminobenzene acids with different functional groups (carboxylic, sulphonic, phosphonic) in para position have been synthesized through potentiodynamic treatment in acid media under oxidative conditions. A noticeable increase in the capacitance for the functionalized carbon nanotubes mainly due to redox processes points out the formation of an electroactive polymer thin film on the CNTs surface along with covalently bonded functionalities. The CNTs functionalized using aminobenzoic acid rendered the highest capacitance values and surface nitrogen content, while the presence of sulfur and/or phosphorus groups in the aminobenzene structure yielded a lower functionalization degree. The oxygen reduction reaction (ORR) activity of the functionalized samples was similar to that of the parent CNTs, independently of the functional group present in the aminobenzene acid. Interestingly, a heat treatment in N2 atmosphere with a very low O2 concentration (3125 ppm) at 800 °C of the CNTs functionalized with aminobenzoic acid produced a material with high amounts of surface oxygen and nitrogen groups (12 and 4% at., respectively), that seem to modulate the electron-donor properties of the resulting material. The onset potential and limiting current for ORR was enhanced for this material. These are promising results that validates the use of electrochemistry for the synthesis of novel N-doped electrocatalysts for ORR in combination with adequate heat treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that single walled carbon nanotubes (SWNTs) decorated with sugar functionalized poly (propyl ether imine) (PETIM) dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate-protein interactions form the basis of present study. The mannose sugar attached PETIM dendrimers undergo charge-transfer interactions with the SWNTs. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A)-mannose affinity constant to be 8.5 x 10(6) M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 mu M of a non-specific lectin peanut agglutinin, showing the high specificity of the Con A-mannose interactions. The specificity of sugar-lectin interactions was characterized further by observing significant shifts in Raman modes of the SWNTs. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4739793]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization-induced phase separation and segmental relaxations in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was systematically investigated by melt-rheology and broadband dielectric spectroscopy in the presence of multiwall carbon nanotubes (MWNTs). Different functionalized MWNTs (amine, -NH2; acid, -COOH) were incorporated in the blends by melt-mixing above the melting temperature of PVDF, where the blends are miscible, and the crystallization induced phase separation was probed in situ by shear rheology. Interestingly, only -NH2 functionalized MWNTs (a-MWNTs) aided in the formation of beta-phase (trans-trans) crystals in PVDF, whereas both the neat blends and the blends with -COOH functionalized MWNTs (c-MWNTs) showed only alpha-phase (trans-gauche-trans-gauche') crystals as inferred from wide-angle X-ray diffraction (WXRD) and Fourier transform infrared (FTIR). Furthermore, blends with only a-MWNTs facilitated in heterogeneous nucleation in the blends manifesting in an increase in the calorimetric crystallization temperature and hence, augmented the theologically determined crystallintion induced phase separation temperature. The dielectric relaxations associated with the crystalline phase of PVDF (alpha(c)) was completely absent in the blends with a-MWNTs in contrast to neat blends and the blends with c-MWNTs in the dielectric loss spectra. The relaxations in the blends investigated here appeared to follow Havriliak-Negami (HN) empirical equations, and, more interestingly, the dynamic heterogeneity in the system could be mapped by an extra relaxation at higher frequency at the crystallization-induced phase separation temperature. The mean relaxation time (tau(HN)) was evaluated and observed to be delayed in the presence of MWNTs in the blends, more prominently in the case of blends with a-MWNTs. The latter also showed a significant increase in the dielectric relaxation strength (Delta epsilon). Electron microscopy and selective etching was used to confirm the localization of MWNTs in the amorphous phases of the interspherulitic regions as observed from scanning electron microscopy (SEM). The evolved crystalline morphology, during crystallization-induced phase separation, was observed to have a strong influence on the charge transport processes in the blends. These observations were further supported by the specific interactions (like dipole induced dipole interaction) between a-MWNTs and PVDF, as inferred from FTIR, and the differences in the crystalline morphology as observed from WXRD and polarized optical microscopy (POM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) is an aliphatic polyester widely used for biomedical applications but lacks the mechanical properties desired for many load-bearing orthopedic applications. The objective of this study was to prepare and characterize PCL composites incorporating multiwall carbon nanotubes (MWNTs) with different surface functional groups. PCL composites were prepared by melt-mixing with three different types of MWNTs: pristine (pMWNT), amine functionalized (aMWNT), and carboxyl functionalized (cMWNT). Melt rheology and scanning electron microscopy indicated good dispersion of the nanotubes in the matrix. Tensile strength and elastic modulus of the polymer was significantly increased by the incorporation of MWNTs and further enhanced by favorable interactions between PCL and aMWNTs. Thermal analysis revealed that MWNTs act as heterogeneous nucleation sites for crystallization of PCL and increase polymer crystallinity. Incorporation of functionalized MWNTs increased the surface water wettability of PCL. Osteoblast proliferation and differentiation was significantly enhanced on functionalized composites. aMWNT composites also exhibited the best bactericidal response. This study demonstrates that surface functionalization of MWNTs profoundly influences the properties of PCL and amine-functionalization offers the optimal combination of mechanical properties, osteogenesis and antimicrobial response. These results have important implications for designing nanocomposites for use in orthopedics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups. Polystyrene was synthesised by atom transfer radical polymerization and was immobilized onto carboxyl acid functionalized multiwall carbon nanotubes (COOH-MWNTs) via nitrene chemistry in order to improve the phase miscibility in PS-PVME blends. Interestingly, blends with 0.25 wt% polystyrene grafted multiwall carbon nanotubes (PS-g-MWNTs) delayed the spinodal decomposition temperature in the blends by similar to 33 degrees C with respect to both control blends and those with COOH-MWNTs. While the localization of COOH-MWNTs in PVME was explained from a thermodynamic point of view, the localization of PS-g-MWNTs was understood to result from favorable PS-PVME contact and the degree of surface coverage of PS on the surface of MWNTs. The length of the cooperative rearranging region (xi) decreased in presence of PS-g-MWNTs, suggesting confinement effects on large scale motions and enhanced interchain concentration fluctuation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin A(2) plays critical role in DNA replication, transcription, and cell cycle regulation. Its overexpression has been detected and related to many types of cancers including leukemia, suggesting that suppression of cyclin A(2) would be an attractive strategy to prevent tumor progression. Herein, we apply functionalized single wall carbon nanotubes (f-SWNTs) to carry small interfering RNA (siRNA) into K562 cells and determine whether inhibition of cyclin A(2) would be a potential therapeutic target for chronic myelogenous leukemia.