942 resultados para Functional programming languages
Resumo:
This paper presents a detailed description of the hardware design and implementation of PROMIDS: a PROtotype Multi-rIng Data flow System for functional programming languages. The hardware constraints and the design trade-offs are discussed. The design of the functional units is described in detail. Finally, we report our experience with PROMIDS.
Resumo:
A new method of specifying the syntax of programming languages, known as hierarchical language specifications (HLS), is proposed. Efficient parallel algorithms for parsing languages generated by HLS are presented. These algorithms run on an exclusive-read exclusive-write parallel random-access machine. They require O(n) processors and O(log2n) time, where n is the length of the string to be parsed. The most important feature of these algorithms is that they do not use a stack.
Resumo:
Functional Programming (FP) systems are modified and extended to form Nondeterministic Functional Programming (NFP) systems in which nondeterministic programs can be specified and both deterministic and nondeterministic programs can be verified essentially within the system. It is shown that the algebra of NFP programs has simpler laws in comparison with the algebra of FP programs. "Regular" forms are introduced to put forward a disciplined way of reasoning about programs. Finally, an alternative definition of "linear" forms is proposed for reasoning about recursively defined programs. This definition, when used to test the linearity of forms, results in simpler verification conditions than those generated by the original definition of linear forms.
Resumo:
An engineering design environment should allow users to design complex engineering systems, to manage and coordinate the designs as they proceed, and to develop and modify the software tools used for designs. These requirements call for a programming environment with an integrated set of software tools of different functionalities. The required functionalities are mainly: the provision of design algorithms based on suitable numeric software, appropriate data structures for the application area, a user-friendly interface, and the provision of a design database for the long term management of the designs generated. The provision of such an integrated design environment in a functional programming environment with particular emphasis on the provision of appropriate control-theoretic data structures and data model is described. Object-orientation is used to model entities in the application domain, which are represented by persistent objects in the database. Structural properties, relationships and operations on entities are modelled through objects and functions classified into strict types with inheritance semantics and a recursive structure.
Resumo:
It is widely accepted that solving programming exercises is fundamental to learn how to program. Nevertheless, solving exercises is only effective if students receive an assessment on their work. An exercise solved wrong will consolidate a false belief, and without feedback many students will not be able to overcome their difficulties. However, creating, managing and accessing a large number of exercises, covering all the points in the curricula of a programming course, in classes with large number of students, can be a daunting task without the appropriated tools working in unison. This involves a diversity of tools, from the environments where programs are coded, to automatic program evaluators providing feedback on the attempts of students, passing through the authoring, management and sequencing of programming exercises as learning objects. We believe that the integration of these tools will have a great impact in acquiring programming skills. Our research objective is to manage and coordinate a network of eLearning systems where students can solve computer programming exercises. Networks of this kind include systems such as learning management systems (LMS), evaluation engines (EE), learning objects repositories (LOR) and exercise resolution environments (ERE). Our strategy to achieve the interoperability among these tools is based on a shared definition of programming exercise as a Learning Object (LO).
Resumo:
A programming style can be seen as a particular model of shaping thought or a special way of codifying language to solve a problem. An adaptive device is made up of an underlying formalism, for instance, an automaton, a grammar, a decision tree, etc., and an adaptive mechanism, responsible for providing features for self-modification. Adaptive languages are obtained by using some programming language as the device’s underlying formalism. The conception of such languages calls for a new programming style, since the application of adaptive technology in the field of programming languages suggests a new way of thinking. Adaptive languages have the basic feature of allowing the expression of programs which self-modifying through adaptive actions at runtime. With the adaptive style, programming language codes can be structured in such a way that the codified program therein modifies or adapts itself towards the needs of the problem. The adaptive programming style may be a feasible alternate way to obtain self-modifying consistent codes, which allow its use in modern applications for self-modifying code.
Resumo:
Adaptive devices show the characteristic of dynamically change themselves in response to input stimuli with no interference of external agents. Occasional changes in behaviour are immediately detected by the devices, which right away react spontaneously to them. Chronologically such devices derived from researches in the field of formal languages and automata. However, formalism spurred applications in several other fields. Based on the operation of adaptive automata, the elementary ideas generanting programming adaptive languages are presented.
Resumo:
Interactive theorem provers are tools designed for the certification of formal proofs developed by means of man-machine collaboration. Formal proofs obtained in this way cover a large variety of logical theories, ranging from the branches of mainstream mathematics, to the field of software verification. The border between these two worlds is marked by results in theoretical computer science and proofs related to the metatheory of programming languages. This last field, which is an obvious application of interactive theorem proving, poses nonetheless a serious challenge to the users of such tools, due both to the particularly structured way in which these proofs are constructed, and to difficulties related to the management of notions typical of programming languages like variable binding. This thesis is composed of two parts, discussing our experience in the development of the Matita interactive theorem prover and its use in the mechanization of the metatheory of programming languages. More specifically, part I covers: - the results of our effort in providing a better framework for the development of tactics for Matita, in order to make their implementation and debugging easier, also resulting in a much clearer code; - a discussion of the implementation of two tactics, providing infrastructure for the unification of constructor forms and the inversion of inductive predicates; we point out interactions between induction and inversion and provide an advancement over the state of the art. In the second part of the thesis, we focus on aspects related to the formalization of programming languages. We describe two works of ours: - a discussion of basic issues we encountered in our formalizations of part 1A of the Poplmark challenge, where we apply the extended inversion principles we implemented for Matita; - a formalization of an algebraic logical framework, posing more complex challenges, including multiple binding and a form of hereditary substitution; this work adopts, for the encoding of binding, an extension of Masahiko Sato's canonical locally named representation we designed during our visit to the Laboratory for Foundations of Computer Science at the University of Edinburgh, under the supervision of Randy Pollack.