997 resultados para Functional divergence
Resumo:
The cyclic AMP receptor protein (CRP) family of transcription factors consists of global regulators of bacterial gene expression. Here, we identify two paralogous CRPs in the genome of Mycobacterium smegmatis that have 78% identical sequences and characterize them biochemically and functionally. The two proteins (MSMEG_0539 and MSMEG_6189) show differences in cAMP binding affinity, trypsin sensitivity, and binding to a CRP site that we have identified upstream of the msmeg_3781 gene. MSMEG_6189 binds to the CRP site readily in the absence of cAMP, while MSMEG_0539 binds in the presence of cAMP, albeit weakly. msmeg_6189 appears to be an essential gene, while the ?msmeg_0539 strain was readily obtained. Using promoter-reporter constructs, we show that msmeg_3781 is regulated by CRP binding, and its transcription is repressed by MSMEG_6189. Our results are the first to characterize two paralogous and functional CRPs in a single bacterial genome. This gene duplication event has subsequently led to the evolution of two proteins whose biochemical differences translate to differential gene regulation, thus catering to the specific needs of the organism.
Resumo:
Glycogen phosphorylase (GlgP, EC 2.4.1.1) catalyzes the cleavage of glycogen into glucose-1-phosphate (Glc-1-P), the first step in glycogen catabolism. Two glgP homologues are found in the genome of Synechocystis sp. PCC 6803, a unicellular cyanobacterium: sll1356 and slr1367. We report on the different functions of these glgP homologues. sll1356, rather than slr1367, is essential for growth at high temperatures. On the other hand, when CO2-fixation and the supply of glucose are both limited, slr1367 is the key factor in glycogen metabolism. In cells growing autotrophically, sll1356 plays a more important role in glycogen digestion than slr1367. This functional divergence is also supported by a phylogenetic analysis of glgP homologues in cyanobacteria.
Resumo:
Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.
Resumo:
The Atlantic Forest domain, one of the 25 world's hotspots for biodiversity, has experienced dramatic changes in its landscape. While the loss of species diversity is well documented, functional diversity has not received the same amount of attention. In this study, we evaluated functional diversity of insects in streams utilizing three indices: functional diversity (FD), functional dispersion (FDis), and functional divergence (FDiv), seeking to understand the roles of three predictor sets in explaining functional patterns: (1) bioclimatic and landscape variables; (2) spatial variables; and (3) local environmental variables. We determined the amount of variation in different measures of functional diversity that was explained by each predictor set and their interplays using variation partitioning. Our study showed that variation in functional diversity is better explained by a set of variables linked to different scales dependent on spatial structures, indicating the importance of landscape and mainly environmental variables in the functional organization of aquatic insect communities, and that the relative importance of predictor sets depends on the indices considered. Variation in FD was better explained by the interplay among the three predictor sets and by local environmental variables, whereas variation in FDis was better explained by spatial variables and by the interplay between environmental and spatial variables. Variation in FDiv was not significantly explained by any predictors. Our study adds more evidence on the harmful effects caused by landscape changes on biodiversity in the Atlantic Forest, suggesting that these effects also influence the functional organization of stream insect communities. © 2013 The Author(s) Journal compilation © 2013 by The Association for Tropical Biology and Conservation.
Resumo:
will be submitted by the author
Resumo:
Heterodimeric proteins with homologous subunits of same fold are involved in various biological processes. The objective of this study is to understand the evolution of structural and functional features of such heterodimers. Using a non-redundant dataset of 70 such heterodimers of known 3D structure and an independent dataset of 173 heterodimers from yeast, we note that the mean sequence identity between interacting homologous subunits is only 23-24% suggesting that, generally, highly diverged paralogues assemble to form such a heterodimer. We also note that the functional roles of interacting subunits/domains are generally quite different. This suggests that, though the interacting subunits/domains are homologous, the high evolutionary divergence characterize their high functional divergence which contributes to a gross function for the heterodimer considered as a whole. The inverse relationship between sequence identity and RMSD of interacting homologues in heterodimers is not followed. We also addressed the question of formation of homodimers of the subunits of heterodimers by generating models of fictitious homodimers on the basis of the 3D structures of the heterodimers. Interaction energies associated with these homodimers suggests that, in overwhelming majority of the cases, such homodimers are unlikely to be stable. Majority of the homologues of heterodimers of known structures form heterodimers (51.8%) and a small proportion (14.6%) form homodimers. Comparison of 3D structures of heterodimers with homologous homodimers suggests that interfacial nature of residues is not well conserved. In over 90% of the cases we note that the interacting subunits of heterodimers are co-localized in the cell. Proteins 2015; 83:1766-1786. (c) 2015 Wiley Periodicals, Inc.
Resumo:
在植物中大多数功能基因是以基因家族的形式存在的,而基因重复则是基因家族的一种重要的进化方式。很多基因往往是由重复事件产生形成不同的拷贝,进而分化形成基因家族。谷胱甘肽转移酶(GSTs)是一类古老、庞大、行使解毒、抗逆、信号转导等多种功能的一个基因家族。本研究以栽培水稻(Oryza sativa ssp. japonica c.v. Nipponbare)为研究材料,以栽培水稻的Phi类GST的5个基因(OsGSTF3、OsGSTF6、OsGSTF14、OsGSTF15、OsGSTF16)为研究对象,分析了它们的系统发生和起源历史、不同组织的差异性表达、编码蛋白质的功能差异等问题,探讨了基因重复后5个基因的功能变化,主要结果如下: 1. OsGSTF3、OsGSTF14、OsGSTF15、OsGSTF16由串联重复产生,而OsGSTF6则由DNA转座产生;它们起源时间早在稻属(Oryza)分化之前。 2. 对水稻不同部位组织的RT-PCR结果表明这5个基因在水稻中的特异性表达组织部位有较大差异:OsGSTF3基因在叶、叶鞘、茎、根4个部位均有大量表达;OsGSTF6基因仅在叶中有表达;OsGSTF14基因在叶鞘、茎2个部位中有表达;OsGSTF15基因在茎、根2个部位中有表达;OsGSTF16则在叶、茎、根3个部位中有表达。 3. 将这5个基因连接原核表达载体PET30a并转化大肠杆菌BL21(DE3),获得了高表达菌株。将表达菌株进行大量表达,表达形式分析显示OsGSTF3蛋白是可溶性表达,而其余4个蛋白以包涵体的形式表达。通过亲和层析获得了纯化的OsGSTF3融合蛋白,OsGSTF3融合蛋白对底物CDNB和NBD-Cl具有高活性,酶动力学分析显示OsGSTF3融合蛋白对GSH与NBD-Cl有较高的亲和力,热力学分析显示该蛋白在40℃以下是热稳定的。通过对包涵体进行洗涤、亲和层析获得了纯化的OsGSTF6、OsGSTF14、OsGSTF15、OsGSTF16的融合蛋白,OsGSTF14融合蛋白对NBD-Cl有微弱活性,OsGSTF15融合蛋白对NBC有较高的活性,而没有检测到OsGSTF6与OsGSTF16融合蛋白的活性。
Resumo:
休眠是温带多年生植物的特性之一。为了适应温带地区寒冷的冬季,多年生植物的分生组织通常在秋末冬初进入休眠状态,这样有利于它们在低温下的存活。因此,温带多年生植物的生长和开花具有季节性。植物的生长发育需要与季节的交替变化同步,才能适应环境,保证繁殖成功。多年生植物通过“生长-休眠-生长”的循环过程适应温带地区寒冷的冬季。休眠既有利于植物存活又可调节开花时间。因此,探索温带多年生植物休眠过程的分子调控机理具有重要的应用价值。 太行花(Taihangia rupestris)是蔷薇科仙女木族的一种多年生草本。它生长在海拔1000到1200米的温带山区。太行花需要两个生长季节才能开花,这一点与模式植物拟南芥、水稻不同。在第一个生长季节花芽诱导,花序发育到秋末冬初时进入休眠状态;过冬花序包裹在叶柄基部,接近土壤表面;到了第二个生长季节,花进一步发育完全,开花结果。休眠过程对太行花花序的存活以及来年的开花时间控制非常关键,对这个过程的调控基因的研究不仅有助于理解太行花休眠的分子机制,还将为其它经济植物在这个方面的研究提供资料。 本研究以太行花为研究材料,从它的过冬花序中分离得到了一个MADS-box基因,分析了它的序列结构、系统发育关系、表达式样和功能,探讨了FLC亚家族基因在太行花这种多年生植物和一年生、两年生植物之间发生的表达功能分化。主要研究结果包括: 1. 从太行花的过冬花序中分离出了TrMADS3基因。氨基酸序列分析结果表明它是MIKCc型MADS-box基因,系统发育分析结果表明TrMADS3与FLC类基因聚在一起。 2. 实时定量PCR和RT-PCR实验显示TrMADS3在冬季休眠期太行花的花序、根、叶中广泛表达。从十月底到一月底的冬季低温期户外太行花植株中TrMADS3表达量比同期温室植株的表达量高,也比夏季户外植株的表达量高。对温室植株进行低温处理能明显上调TrMADS3的表达量,而短光照、干旱、高盐和脱落酸(ABA)处理对TrMADS3的表达影响不明显。 3. 用原位杂交的方法分析了TrMADS3的表达式样。营养器官中,TrMADS3在营养顶端分生组织、叶原基、幼叶边缘细胞中表达量高;生殖器官中,TrMADS3在侧生分生组织、花序原基、花原基、幼苞片、萼片原基、花瓣原基、雄蕊原基、心皮原基、发育中的雄蕊、心皮中表达量高。TrMADS3的表达模式反映了TrMADS3调控营养生长和不同阶段的花序、花发育过程。 4. TrMADS3在拟南芥中异位表达不影响拟南芥开花时间。在高盐和干旱胁迫条件下,TrMADS3异位表达能够明显提高转基因拟南芥后熟种子的萌发率。 5. 建立了太行花的组培体系。 综上所述,TrMADS3属于FLC进化支,这一亚家族基因还未在多年生植物中报道。TrMADS3在太行花休眠期表达量很高。在实验控制条件下,一至两周低温能够明显促进TrMADS3表达量的上调。低温处理后回到生长温度的太行花在一月内依然保持较高的TrMADS3的表达。原位杂交实验显示TrMADS3在营养和生殖分生组织中表达量高。TrMADS3在拟南芥中异位表达促进后熟种子在高盐和干旱胁迫下萌发。因此,我们推测TrMADS3具有响应低温调节太行花休眠期营养和生殖分生组织活性的功能。在一、二年生植物中分离的FLC-like基因响应春化作用,具有抑制花芽诱导的保守功能,这些基因在营养器官中表达,受春化作用调节,对应一、二年生植物的成花诱导受春化作用促进的过程,但TrMADS3在太行花营养和生殖器官中均表达,对应太行花花芽诱导后营养和生殖器官均进入休眠状态的生理特性,因此,我们推测FLC-like基因有可能在太行花这种温带多年生植物和一、二年生植物之间发生功能分化。
Resumo:
The origin of new structures and functions is an important process in evolution. In the past decades, we have obtained some preliminary knowledge of the origin and evolution of new genes. However, as the basic unit of genes, the origin and evolution of exons remain unclear. Because young exons retain the footprints of origination, they can be good materials for studying origin and evolution of new exons. In this paper, we report two young exons in a zinc finger protein gene of rodents. Since they are unique sequences in mouse and rat genome and no homologous sequences were found in the orthologous genes of human and pig, the young exons might originate after the divergence of primates and rodents through exonization of intronic sequences. Strong positive selection was detected in the new exons between mouse and rat, suggesting that these exons have undergone significant functional divergence after the separation of the two species. On the other hand, population genetics data of mouse demonstrate that the new exons have been subject to functional constraint, indicating an important function of the new exons in mouse. Functional analyses suggest that these new exons encode a nuclear localization signal peptide, which may mediate new ways of nuclear protein transport. To our knowledge, this is the first example of the origin and evolution of young exons.
Resumo:
研究蛇毒Ⅱ类磷脂酶A2 (PLA2 ) 中D49 PLA2 和K49 PLA2 的功能分化及其功能分化决定位点的鉴定。方法: 运 用序列比较分析, 进化树构建和DIVERGE v1104 软件计算研究D49 PLA2 和K49 PLA2 的功能分化情况及其分化位点。结果: 序列比较分析, 进化树构建和DIVERGE v1104 软件计算结果表明蛇毒Ⅱ类PLA2 中D49 PLA2 和K49 PLA2 的确发生了功能分 化, 对于K49 PLA2 来说, 1S , 7K, 11Q , E12 , R34 , T56 , N88 , L92 , E108 , K116 , K128 可能为功能分化决定位点。对于 D49 PLA2 , L2 , G33 , G35 , F46 和Y118 可能为功能分化决定位点。结论: 我们首次通过序列比较分析, 进化树构建和DI2 VERGE v1104 软件计算鉴定出蛇毒Ⅱ类PLA2 中D49 PLA2 和K49 PLA2 可能的功能分化位点, 为今后通过基因重组和定点突 变方法研究蛇毒Ⅱ类PLA2 结构功能关系提供了线索。
Resumo:
Gene duplication is thought to provide raw material for functional divergence and innovation. Fish-specific dmrt2b has been identified as a duplicated gene of the dmrt2a/terra in fish genomes, but its function has remained unclear. Here we reveal that Dmrt2b knockdown zebrafish embryos display a downward tail curvature and have U-shaped somites. Then, we demonstrate that Dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway, because Dmrt2b knockdown reduces target gene expression of Hedgehog signaling, and also impairs slow muscle development and neural tube patterning through Hedgehog signaling. Moreover, the Dmrt2b morphants display defects in heart and visceral organ asymmetry, and, some lateral-plate mesoderm (LPM) markers expressed in left side are randomized. Together, these data indicate that fish-specific duplicated dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway and maintains the common function for left-right asymmetry establishment.
Resumo:
Background: The DExD/H domain containing RNA helicases such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) of invading viruses. The RIG-I and MDA5 proteins differentially recognise conserved PAMPs in double stranded or single stranded viral RNA molecules, leading to activation of the interferon system in vertebrates. They share three core protein domains including a RNA helicase domain near the C terminus (HELICc), one or more caspase activation and recruitment domains (CARDs) and an ATP dependent DExD/H domain. The RIG-I/MDA5 directed interferon response is negatively regulated by laboratory of genetics and physiology 2 (LGP2) and is believed to be controlled by the mitochondria antiviral signalling protein (MAVS), a CARD containing protein associated with mitochondria. Results: The DExD/H containing RNA helicases including RIG-I, MDA5 and LGP2 were analysed in silico in a wide spectrum of invertebrate and vertebrate genomes. The gene synteny of MDA5 and LGP2 is well conserved among vertebrates whilst conservation of the gene synteny of RIG-I is less apparent. Invertebrate homologues had a closer phylogenetic relationship with the vertebrate RIG-Is than the MDA5/LGP2 molecules, suggesting the RIG-I homologues may have emerged earlier in evolution, possibly prior to the appearance of vertebrates. Our data suggest that the RIG-I like helicases possibly originated from three distinct genes coding for the core domains including the HELICc, CARD and ATP dependent DExD/H domains through gene fusion and gene/domain duplication. Furthermore, presence of domains similar to a prokaryotic DNA restriction enzyme III domain (Res III), and a zinc finger domain of transcription factor (TF) IIS have been detected by bioinformatic analysis. Conclusion: The RIG-I/MDA5 viral surveillance system is conserved in vertebrates. The RIG-I like helicase family appears to have evolved from a common ancestor that originated from genes encoding different core functional domains. Diversification of core functional domains might be fundamental to their functional divergence in terms of recognition of different viral PAMPs.
Resumo:
Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them. © 2005 Elsevier B.V. All rights reserved.