932 resultados para Full-bridge inverters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nine level modular multilevel cascade converter (MMCC) based on four full bridge cells is shown driving a piezoelectric ultrasonic transducer at 71 and 39 kHz, in simulation and experimentally. The modular cells are small stackable PCBs, each with two fully integrated surface mount 22 V, 40 A MOSFET half-bridge converters, and include all control signal and power isolation. In this work, the bridges operate at 12 V and 384 kHz, to deliver a 96 Vpp 9 level waveform with an effective switching frequency of 3 MHz. A 9 pH air cored inductor forms a low pass filter in conjunction with the 3000 pF capacitance of the transducer load. Eight equally phase-displaced naturally sampled pulse width modulation (PWM) drive signals, along with the modulating sinusoid, are generated using phase accumulation techniques in a dedicated FPGA. Experimental time domain and FFT plots of the multilevel and transducer output waveforms are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present trend in the industry is towards the use of power transistors in the development of efficient Pulsewidth Modulated (PWM) inverters, because of their operation at high frequency, simplicity of turn-off, and low commutation losses compared to the technology using thyristors. But the protection of power transistors, minimization of switching power loss, and design of base drive circuit are very important for a reliable operation of the system. The requirements, analysis, and a simplified procedure for calculation of the switching-aid network components are presented. The transistor is protected against short circuit using a modified autoregulated and autoprotection drive circuit. The experimental results show that the switching power loss and voltage stress in the device can be reduced by suitable choice of the switching-aid network component values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the development of dodecagonal (12-sided) space vector diagrams from cascaded H-Bridge inverters. As already reported in literatures, dodecagonal space vector diagrams have many advantages over conventional hexagonal ones. Some of them include the absence of 6n±1, (n=odd) harmonics from the phase voltage, and the extension of the linear modulation range. In this paper, a new power circuit is proposed for generating multiple dodecagons in the space vector plane. It consists of two cascaded H-Bridge cells fed from asymmetric dc voltage sources. It is shown that, with proper PWM timing calculation and placement of active and zero vectors, a very high quality of sine-wave can be produced. At the same time, the switching frequency of individual cells can be reduced substantially. Detailed PWM analysis, one design example and an elaborate simulation study is presented to support the proposed idea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new topology of asymmetric cascaded H-Bridge inverter is presented in this paper It consists of two cascaded H-bridge cells per phase. They are fed from isolated dc sources having a dc bus ratio of 1:0.366. Out of many space vectors possible from this circuit, only those are chosen that lie on 12-sided polygons. Thus, the overall space vector diagram produced by this circuit consists of multiple numbers of 12-sided polygons. With a proper PWM timing calculations based on these selected space vectors, it is possible to eliminate all the 6n +/- 1, (n = odd) harmonics from the phase voltage under all operating conditions. The switching frequency of individual H-Bridge cells is also substantially low. Extensive experimental results have been presented in this paper to validate the proposed concept.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase shift full bridge (PSFB) converter allows high efficiency power conversion at high frequencies through zero voltage switching (ZVS); the parasitic drain-to-source capacitance of the MOSFET is discharged by a resonant inductance before the switch is gated resulting in near zero turn-on switching losses. Typically, an extra inductance is added to the leakage inductance of a transformer to form the resonant inductance necessary to charge and discharge the parasitic capacitances of the PSFB converter. However, many PSFB models do not consider the effects of the magnetizing inductance or dead-time in selecting the resonant inductance required to achieve ZVS. The choice of resonant inductance is crucial to the ZVS operation of the PSFB converter. Incorrectly sized resonant inductance will not achieve ZVS or will limit the load regulation ability of the converter. This paper presents a unique and accurate equation for calculating the resonant inductance required to achieve ZVS over a wide load range incorporating the effects of the magnetizing inductance and dead-time. The derived equations are validated against PSPICE simulations of a PSFB converter and extensive hardware experimentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is funded by RTE, Paris, France

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'evoluzione della tecnologia allo stato solido e il fiorire di nuove applicazioni determinano una forte spinta verso la miniaturizzazione dei convertitori elettronici di potenza. Questa riduzione di pesi ed ingombri è particolarmente sentita anche in quei convertitori di media potenza che necessitano di un trasformatore d'isolamento. In quest'ambito assume importante rilievo l'utilizzo di una architettura circuitale a ponte intero e di tecniche in grado di spingere la frequenza di commutazione il più in alto possibile. Questa tesi si propone quindi di studiare a fondo il funzionamento dei convertitori DC/DC isolati di tipo Full-Bridge e pilotati con la tecnica di modulazione Phase-Shifted che ben si presta all'impiego di commutazioni risonanti del tipo Zero-Voltage-Switching. L'analisi teorica sarà corroborata da simulazioni condotte su LTspice e sarà orientata all'individuazione di una metodologia di progetto generale per questo tipo di convertitori. Al fine di formalizzare meglio il progetto si è individuata una possibile applicazione nell'alimentazione di un DC-bus per telecomunicazioni (48 Volt DC sostenuti da batterie) a partire da una fonte di energia fotovoltaica quale una stringa di pannelli operanti con tensioni variabili da 120 a 180 Volt DC. Per questo particolare tipo di applicazione in discesa può avere senso l'impiego di un rettificatore del tipo a duplicazione di corrente, che quindi si provvederà a studiare e ad implementare a secondario del trasformatore d'isolamento. Infine particolare cura sarà dedicata alla parte di controllo che si ha intenzione di integrare all'interno di LTspice così da riuscire a simulare il comportamento dinamico del convertitore e verificare quanto predetto in via teorica mediante l'impiego della procedura che utilizza il K-Factor per la realizzazione della rete compensatrice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-stage isolated converters for photovoltaic (PV) applications commonly employ a high-frequency transformer on the DC-DC side, submitting the DC-AC inverter switches to high voltages and forcing the use of IGBTs instead of low-voltage and low-loss MOSFETs. This paper shows the modeling, control and simulation of a single-phase full-bridge inverter with high-frequency transformer (HFT) that can be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC inverter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the PResonant current control regulator. A high-frequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The output harmonic quality of N series connected full-bridge dc-ac inverters is investigated. The inverters are pulse width modulated using a common reference signal but randomly phased carrier signals. Through analysis and simulation, probability distributions for inverter output harmonics and vector representations of N carrier phases are combined and assessed. It is concluded that a low total harmonic distortion is most likely to occur and will decrease further as N increases.