980 resultados para Full-bridge inverter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nine level modular multilevel cascade converter (MMCC) based on four full bridge cells is shown driving a piezoelectric ultrasonic transducer at 71 and 39 kHz, in simulation and experimentally. The modular cells are small stackable PCBs, each with two fully integrated surface mount 22 V, 40 A MOSFET half-bridge converters, and include all control signal and power isolation. In this work, the bridges operate at 12 V and 384 kHz, to deliver a 96 Vpp 9 level waveform with an effective switching frequency of 3 MHz. A 9 pH air cored inductor forms a low pass filter in conjunction with the 3000 pF capacitance of the transducer load. Eight equally phase-displaced naturally sampled pulse width modulation (PWM) drive signals, along with the modulating sinusoid, are generated using phase accumulation techniques in a dedicated FPGA. Experimental time domain and FFT plots of the multilevel and transducer output waveforms are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dead-time is introduced between the gating signals to the top and bottom switches in a voltage source inverter (VSI) leg, to prevent shoot through fault due to the finite turn-off times of IGBTs. The dead-time results in a delay when the incoming device is an IGBT, resulting in error voltage pulses in the inverter output voltage. This paper presents the design, fabrication and testing of an advanced gate driver, which eliminates dead-time and consequent output distortion. Here, the gating pulses are generated such that the incoming IGBT transition is not delayed and shoot-through is also prevented. The various logic units of the driver card and fault tolerance of the driver are verified through extensive tests on different topologies such as chopper, half-bridge and full-bridge inverter, and also at different conditions of load. Experimental results demonstrate the improvement in the load current waveform quality with the proposed circuit, on account of elimination of dead-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase shift full bridge (PSFB) converter allows high efficiency power conversion at high frequencies through zero voltage switching (ZVS); the parasitic drain-to-source capacitance of the MOSFET is discharged by a resonant inductance before the switch is gated resulting in near zero turn-on switching losses. Typically, an extra inductance is added to the leakage inductance of a transformer to form the resonant inductance necessary to charge and discharge the parasitic capacitances of the PSFB converter. However, many PSFB models do not consider the effects of the magnetizing inductance or dead-time in selecting the resonant inductance required to achieve ZVS. The choice of resonant inductance is crucial to the ZVS operation of the PSFB converter. Incorrectly sized resonant inductance will not achieve ZVS or will limit the load regulation ability of the converter. This paper presents a unique and accurate equation for calculating the resonant inductance required to achieve ZVS over a wide load range incorporating the effects of the magnetizing inductance and dead-time. The derived equations are validated against PSPICE simulations of a PSFB converter and extensive hardware experimentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-stage isolated converters for photovoltaic (PV) applications commonly employ a high-frequency transformer on the DC-DC side, submitting the DC-AC inverter switches to high voltages and forcing the use of IGBTs instead of low-voltage and low-loss MOSFETs. This paper shows the modeling, control and simulation of a single-phase full-bridge inverter with high-frequency transformer (HFT) that can be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC inverter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the PResonant current control regulator. A high-frequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is funded by RTE, Paris, France

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'evoluzione della tecnologia allo stato solido e il fiorire di nuove applicazioni determinano una forte spinta verso la miniaturizzazione dei convertitori elettronici di potenza. Questa riduzione di pesi ed ingombri è particolarmente sentita anche in quei convertitori di media potenza che necessitano di un trasformatore d'isolamento. In quest'ambito assume importante rilievo l'utilizzo di una architettura circuitale a ponte intero e di tecniche in grado di spingere la frequenza di commutazione il più in alto possibile. Questa tesi si propone quindi di studiare a fondo il funzionamento dei convertitori DC/DC isolati di tipo Full-Bridge e pilotati con la tecnica di modulazione Phase-Shifted che ben si presta all'impiego di commutazioni risonanti del tipo Zero-Voltage-Switching. L'analisi teorica sarà corroborata da simulazioni condotte su LTspice e sarà orientata all'individuazione di una metodologia di progetto generale per questo tipo di convertitori. Al fine di formalizzare meglio il progetto si è individuata una possibile applicazione nell'alimentazione di un DC-bus per telecomunicazioni (48 Volt DC sostenuti da batterie) a partire da una fonte di energia fotovoltaica quale una stringa di pannelli operanti con tensioni variabili da 120 a 180 Volt DC. Per questo particolare tipo di applicazione in discesa può avere senso l'impiego di un rettificatore del tipo a duplicazione di corrente, che quindi si provvederà a studiare e ad implementare a secondario del trasformatore d'isolamento. Infine particolare cura sarà dedicata alla parte di controllo che si ha intenzione di integrare all'interno di LTspice così da riuscire a simulare il comportamento dinamico del convertitore e verificare quanto predetto in via teorica mediante l'impiego della procedura che utilizza il K-Factor per la realizzazione della rete compensatrice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A grid-connected microinverter with a reduced number of power conversion stages and fewer passive components is proposed. A high-frequency transformer and a series-resonant tank are used to interface the full-bridge inverter to the half-wave cycloconverter. All power switches are switched with zero-voltage switching. Phase-shift power modulation is used to control the output power of the inverter. A steady-state analysis of the proposed topology is presented to determine the average output power of the inverter. Analysis of soft switching of the full-bridge and the half-wave cycloconverter is presented with respect to voltage gain, quality factor, and phase shift of the inverter. Simulation and experimental results are presented to validate the operation of the proposed topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a dimmable electronic ballast designed for multiple fluorescent lamps applications. A ZCS-PWM Boost rectifier and a classical resonant Full-Bridge inverter compose this new electronic ballast, providing conditions for the obtaining of high input power-factor, and soft-switching processes for all semiconductor devices employed in the structure. The instantaneous average input current control technique is employed in the Boost rectifier. Concerning the Full-Bridge inverter, it is controlled by the imposition of phase-shift in the current processed through the sets of resonant filters + lamps, according to an adaptation in a specially designed control IC, called IR2159. Experimental results are presented in order to validate the analyses developed in this paper.