968 resultados para Full-Depth reclamation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reciclagem profunda com espuma de asfalto tem sido uma alternativa de sucesso para a restauração de pavimentos degradados. Em relação às soluções tradicionais de reabilitação, como os recapeamentos, tem a vantagem de proporcionar a correção de defeitos em camadas inferiores, com a manutenção ou pequena elevação do greide da pista, além de ganhos ambientais, como um menor consumo de materiais virgens da natureza e redução do volume de material descartado. Entretanto, no Brasil não há método para dimensionamento estrutural para esta tecnologia, o que dificulta seu emprego. Para o desenvolvimento de um procedimento de dimensionamento que contemple este tipo de solução, foram estudados métodos presentes na bibliografia internacional: guia da AASHTO de 1993 e Caltrans, dos EUA, TRL386 e TRL611, da Inglaterra, as duas versões do guia sul-africano TG2 e os métodos oriundos do Austroads, tanto o procedimento interino de 2011 como adaptações de órgãos da Austrália e Nova Zelândia. Observou-se divergência de opiniões quanto ao comportamento do material reciclado com espuma de asfalto. Alguns órgãos e autores consideram o comportamento do mesmo mais próximo às misturas asfálticas, sendo o mecanismo de falha o trincamento, e outros o definem como semelhante a um material granular modificado com alta coesão e ruptura devido às deformações permanentes. Correlaciona-se tal associação ao teor de espuma usualmente utilizado nas obras rodoviárias. Outros aspectos que se destacam para este tipo de base são o ganho de resistência ao longo do tempo devido à cura, mesmo com início da operação da rodovia e a importância da infraestrutura remanescente no dimensionamento. Tais fatos foram corroborados pelos estudos de caso e resultados do trecho experimental construído na Rodovia Ayrton Senna - SP 070, monitorado por meio de ensaios deflectométricos com FWD durante um ano. Como resultado do trabalho, foi proposto um procedimento para o dimensionamento estrutural de pavimentos com camadas recicladas a frio com espuma de asfalto utilizando dados deflectométricos que atende o método do Manual de Pavimentação do Departamento Nacional de Infraestrutura de Transportes (DNIT) e incorpora diferentes aspectos na análise mecanicista. Outras conclusões são a viabilidade técnica a longo prazo da solução mencionada e a importância do controle tecnológico, com ênfase para o monitoramento deflectométrico nos primeiros meses de operação do pavimento para averiguar a evolução da cura do material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold in-place recycling (CIR) and cold central plant recycling (CCPR) of asphalt concrete (AC) and/or full-depth reclamation (FDR) of AC and aggregate base are faster and less costly rehabilitation alternatives to conventional reconstruction for structurally distressed pavements. This study examines 26 different rehabilitation projects across the USA and Canada. Field cores from these projects were tested for dynamic modulus and repeated load permanent deformation. These structural characteristics are compared to reference values for hot mix asphalt (HMA). A rutting sensitivity analysis was performed on two rehabilitation scenarios with recycled and conventional HMA structural overlays in different climatic conditions using the Mechanistic Empirical Pavement Design (MEPDG). The cold-recycled scenarios exhibited performance similar to that of HMA overlays for most cases. The exceptions were the cases with thin HMA wearing courses and/or very poor cold-recycled material quality. The overall conclusion is that properly designed CIR/FDR/CCPR cold-recycled materials are a viable alternative to virgin HMA materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the results of an experimental and analytical comparison of the flexural behavior of a high-strength concrete specimen (no conventional reinforcement) with an average plain concrete cube strength of nearly 65 MPa and containing trough shape steel fibers. Trough shape steel fibers with a volume fraction ranging from 0 to 1.5% and having a constant aspect ratio of 80 have been used in this study. Increased toughness and a more ductile stress-strain response were observed with an increase in fiber content, when the fibers were distributed over the full/partial depth of the beam cross section. Based on the tests, a robust analytical procedure has been proposed to establish the required partial depth to contain fiber-reinforced concrete (FRC) so as to obtain the flexural capacity of a member with FRC over the full depth. It is expected that this procedure will help designers in properly estimating the required partial depth of fibers in composite sections for specific structural applications. Empirical and mechanistic relations have also been proposed in this study to establish the load-deflection behavior of high-strength FRC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A non-destructive, diffuse reflectance near infrared spectroscopy (DR-NIRS)approach is considered as a potential tool for determining the component-level structural properties of articular cartilage. To this end, DR-NIRS was applied in vitro to detect structural changes, using principal component analysis as the statistical basis for characterization. The results show that this technique, particularly with first-derivative pretreatment, can distinguish normal, intact cartilage from enzymatically digested cartilage. Further, this paper establishes that the use of DR-NIRS enables the probing of the full depth of the uncalcified cartilage matrix, potentially allowing the assessment of degenerative changes in joint tissue, independent of the site of initiation of the osteoarthritic process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research has established, through ultrasound, near infrared spectroscopy and biomechanics experiments, parameters and parametric relationships that can form the framework for quantifying the integrity of the articular cartilage-on-bone laminate, and objectively distinguish between normal/healthy and abnormal/degenerated joint tissue, with a focus on articular cartilage. This has been achieved by: 1. using traditional experimental methods to produce new parameters for cartilage assessment; 2. using novel methodologies to develop new parameters; and 3. investigating the interrelationships between mechanical, structural and molec- ular properties to identify and select those parameters and methodologies that can be used in a future arthroscopic probe based on points 1 and 2. By combining the molecular, micro- and macro-structural characteristics of the tissue with its mechanical properties, we arrive at a set of critical benchmarking parameters for viable and early-stage non-viable cartilage. The interrelationships between these characteristics, examined using a multivariate analysis based on principal components analysis, multiple linear regression and general linear modeling, could then to deter- mine those parameters and relationships which have the potential to be developed into a future clinical device. Specifically, this research has found that the ultrasound and near infrared techniques can subsume the mechanical parameters and combine to characterise the tissue at the molecular, structural and mechanical levels over the full depth of the cartilage matrix. It is the opinion in this thesis that by enabling the determination of the precise area of in uence of a focal defect or disease in the joint, demarcating the boundaries of articular cartilage with dierent levels of degeneration around a focal defect, better surgical decisions that will advance the processes of joint management and treatment will be achieved. Providing the basis for a surgical tool, this research will contribute to the enhancement and quanti�cation of arthroscopic procedures, extending to post- treatment monitoring and as a research tool, will enable a robust method for evaluating developing (particularly focalised) treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In design studio, sketching or visual thinking is part of processes that assist students to achieve final design solutions. At QUT’s First and Third Year industrial design studio classes we engage in a variety of teaching pedagogies from which we identify ‘Concept Bombs’ as an instrumental in the development of students’ visual thinking and reflective design process, and also as a vehicle to foster positive student engagement. Our ‘formula’: Concept Bombs are 20 minute design tasks focusing on rapid development of initial concept designs and free-hand sketching. Our experience and surveys tell us that students value intensive studio activities especially when combined with timely assessment and feedback. While conventional longer-duration design projects are essential for allowing students to engage with the full depth and complexity of the design process, short and intensive design activities introduce variety to the learning experience and enhance student engagement. This paper presents a comparative analysis of First and Third Year students’ Concept Bomb sketches to describe the types of design knowledge embedded in them, a discussion of limitations and opportunities of this pedagogical technique, as well as considerations for future development of studio based tasks of this kind as design pedagogies in the midst of current university education trends.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In design studio, sketching or visual thinking is part of processes that assist students to achieve final design solutions. At QUT’s First and Third Year industrial design studio classes we engage in a variety of teaching pedagogies from which we identify ‘Concept Bombs’ as instrumental in the development of students’ visual thinking and reflective design process, and also as a vehicle to foster positive student engagement. In First year studios our Concept Bombs’ consist of 20 minute individual design tasks focusing on rapid development of initial concept designs and free-hand sketching. In Third Year studios we adopt a variety of formats and different timing, combining individual and team based tasks. Our experience and surveys tell us that students value intensive studio activities especially when combined with timely assessment and feedback. While conventional longer-duration design projects are essential for allowing students to engage with the full depth and complexity of the design process, short and intensive design activities introduce variety to the learning experience and enhance student engagement. This paper presents a comparative analysis of First and Third Year students’ Concept Bomb sketches to describe the types of design knowledge embedded in them, a discussion of limitations and opportunities of this pedagogical technique, as well as considerations for future development of studio based tasks of this kind as design pedagogies in the midst of current university education trends.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed Using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interlace. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable Of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely Using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. I-lie capability of the model to capture the critical crack regions, loads and deflections for various types Of shear failures ill prestressed concrete beam has been illustrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental study aimed at understanding the deformational behavior of conventionally reinforced steel fiber concrete beams in pure bending is reported in this paper. One group of beams has steel fibers dispersed in the entire volume of the beam and the second has fibers dispersed over half the depth of the beam on the tension side. A comparative study of the deformational characteristics of these beams has been made. Half-depth fiber inclusion, requiring only half the quantity of fibers of full-depth inclusion, is found to be equally effective in improving the deformational behavior of beams. Thus, by such modes of inclusion of fibers, an economical and efficient use of expensive steel fibers can be realized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an assessment of the flexural behavior of 15 fully/partially prestressed high strength concrete beams containing steel fibers investigated using three-dimensional nonlinear finite elemental analysis. The experimental results consisted of eight fully and seven partially prestressed beams, which were designed to be flexure dominant in the absence of fibers. The main parameters varied in the tests were: the levels of prestressing force (i.e, in partially prestressed beams 50% of the prestress was reduced with the introduction of two high strength deformed bars instead), fiber volume fractions (0%, 0.5%, 1.0% and 1.5%), fiber location (full depth and partial depth over full length and half the depth over the shear span only). A three-dimensional nonlinear finite element analysis was conducted using ANSYS 5.5 [Theory Reference Manual. In: Kohnke P, editor. Elements Reference Manual. 8th ed. September 1998] general purpose finite element software to study the flexural behavior of both fully and partially prestressed fiber reinforced concrete beams. Influence of fibers on the concrete failure surface and stress-strain response of high strength concrete and the nonlinear stress-strain curves of prestressing wire and deformed bar were considered in the present analysis. In the finite element model. tension stiffening and bond slip between concrete and reinforcement (fibers., prestressing wire, and conventional reinforcing steel bar) have also been considered explicitly. The fraction of the entire volume of the fiber present along the longitudinal axis of the prestressed beams alone has been modeled explicitly as it is expected that these fibers would contribute to the mobilization of forces required to sustain the applied loads across the crack interfaces through their bridging action. A comparison of results from both tests and analysis on all 15 specimens confirm that, inclusion of fibers over a partial depth in the tensile side of the prestressed flexural structural members was economical and led to considerable cost saving without sacrificing on the desired performance. However. beams having fibers over half the depth in only the shear span, did not show any increase in the ultimate load or deformational characteristics when compared to plain concrete beams. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

提出一种基于正弦相位调制的频域光学相干层析成像,利用正弦相位调制干涉术探测复频域干涉条纹的实部和虚部,重建复频域干涉条纹。对该复频域干涉条纹作逆傅里叶变换后,消除了频域光学相干层析成像中存在的复共轭镜像以及直流背景和自相干噪声。对玻璃片样品进行了层析成像实验。实验结果表明,采用正弦相位调制的频域光学相干层析成像,将可利用的成像深度范围扩大到原来的2倍,实现了全深度探测的频域光学相干层析成像。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many typical liquefaction remediation techniques are not appropriate for application under existing buildings and more novel techniques are required. This paper describes centrifuge tests investigating the performance of cementation as a liquefaction remediation method. Two soil profiles with the same superstructure were tested under earthquake shaking. The first profile consisted of a deep layer of loose, liquefiable sand. The second comprised a shallow layer of loose sand overlying dense sand. Centrifuge tests were carried out with a cemented zone underneath the structure, through the full depth of the liquefiable layers and also partial depth. The superstructure was modelled as a single-degree-offreedom system. It is found that a cemented zone through the full depth of a liquefiable layer results in considerable reduction of structural settlements. Increased magnitude and higher frequency accelerations are transmitted to the structure but, depending on the building characteristics, it is likely that improved overall seismic performance can be achieved. Improvements in structural settlements can also be obtained with partialdepth remediation, if the depth of the cemented zone is greater than the depth of liquefaction. This type of remediation seems to have little effect on the accelerations transmitted to the structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over recent years academia and industry have engaged with the challenge of model testing deepwater structures at conventional scales. One approach to the limited depth problem has been to truncate the lines. This concept will be introduced, highlighting the need to better understand line dynamic processes. The type of line truncation developed here models the upper sections of each line in detail, capturing wave action and all coupling effects with the vessel, terminating to an approximate analytical model that aims to simulate the remainder of the line. A rationale for this is that in deep water transverse elastic waves of a line are likely to decay before they are reflected at the seabed because of nonlinear hydrodynamic drag forces. The first part of this paper is centered on verification of this rationale. A simplified model of a mooring line that describes the transverse dynamics in wave frequency is used, adopting the equation of motion of an inextensible taut string. The line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it can be useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. This is followed by developing a truncation mechanism, formulating an end approximation that can reproduce the correct impedance, had the line been continuous to full depth. It has been found that below a certain length criterion, which is also universal, the transverse vibrational characteristics for each line are inertia driven. As such the truncated model can assume a linear damper whose coefficient depends on the line properties and frequency of vibration. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many typical ground improvement techniques that are used for liquefaction remediation, such as in situ densification, are not appropriate for application under existing buildings and more novel techniques are required. This paper describes centrifuge tests investigating the performance of rigid containment walls as a liquefaction remediation method. A simple frame structure, founded on a deep layer of loose, liquefiable sand was tested under earthquake shaking. Centrifuge tests were then carried out with containment walls around the base of the structure, extending through the full depth of the liquefiable layer and also partial depth. It is found that rigid containment walls can be very effective in reducing structural settlements primarily by preventing lateral movement of the foundation sand but the impermeability of the walls may also be important. Improvements in structural settlement are observed even when the walls do not extend through the full depth of the liquefiable layer, if the depth of the walls is greater than the depth of the free field liquefaction. In addition, it is found that the accelerations of the structure are not increased, provided there is no rigid, structural connection between the structure and the containment walls. © 2012 World Scientific Publishing Company.