4 resultados para FucoPol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho trabalho produziram-se micropartículas de polissacarídeos contendo um fármaco anticancerígeno, o 5-Fluorouracil, ou um anti-inflamatório, a Prednisolona, utilizando como matrizes encapsulantes o quitosano e o FucoPol. As micropartículas foram produzidas pelo método de secagem por atomização (spray-drying). Foram estudados vários reticulantes biocompatíveis: o ácido glutâmico; o ácido cítrico e a lisina. As micropartículas produzidas foram caracterizadas em termos de morfologia, tamanho, propriedades químicas, propriedades térmicas, cristalinidade e eficiência de encapsulamento recorrendo a técnicas como microscopia electrónica de varrimento (SEM), Espectro de infravermelho por transformada de Fourier (FT-IR), calorimetria diferencial de varrimento (DSC), difracção de raios-X (XRD) e espectroscopia UV. Os perfis de concentração foram obtidos realizando ensaios de libertação em dois meios distintos, em Suco Gástrico Simulado (pH=1,2) e Suco Intestinal Simulado (pH=6,8) e foram calculadas as velocidades de libertação para cada ensaio. Verificou-se que os ensaios com o fármaco modelo Prednisolona em matrizes de quitosano em meio ácido, pH=1,2, apresentam uma libertação mais lenta. Os reticulantes mais adequados para o quitosano são o ácido glutâmico para a libertação no estômago, a pH=1,2, e o ácido cítrico para a libertação no intestino, a pH=6,8. Em relação ao FucoPol, a concentração de reticulante mais adequada para ambos os meios de libertação revelou ser a de 50% em massa de lisina relativamente à massa de FucoPol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.