957 resultados para Ft-raman


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the degree of conversion by Knoop microhardness (KHN) and FT-Raman spectroscopy (FTIR) of one nanofilled (Filtek Supreme-3M-ESPE [FS]) and one microhybrid composite (Charisma-Heraeus-Kulzer [CH]), each with different opacities, namely enamel, dentin, and translucent, which were photo-activated by a quartz-tungsten-halogen lamp (QTH) and a light-emitting diode (LED). Resin was bulk inserted into a disc-shaped mold that was 2.0 mm thick and 4 mm in diameter, obtaining 10 samples per group. KHN and FTIR values were analyzed by two-way ANOVA and Tukey's tests (α = 0.05). Nanofilled resin activated by a LED presented higher microhardness values than samples activated by a QTH for dentin opacity (p < 0.05). The microhybrid resin showed no differences in KHN or FTIR values with different activation sources or opacity. The nanofilled dentin and enamel resins showed lower FTIR values than the translucent resin. The KHN values of the translucent resins were not influenced by the light source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FT-Raman and FT-IR spectra of ASnFe(PO4)3 [A=Na2, Ca, Cd] were recorded and analyzed. The bands were assigned in terms of the vibrational group frequencies of SnO6 octahedral and PO4 tetrahedral. The spectral analysis shows that the symmetry of corner shared octahedral (SnO6) and the tetrahedral (PO4) are lowered from their free ion symmetry state. The presence of Fe3+ ions disrupts the S–N–O–S–N chain in the structure. This causes distortion of SnO6 and PO4 in the structure of all the compounds. Also it is seen that there are two distinct PO4 tetrahedra of different P–O bond lengths. One of these tetrahedra is linearly distorted in all the title compounds. The PO4 frequencies and bond lengths are calculated theoretically and are in agreement with the experimental values. The presence of PO4 polyanion in the structure can reduce the redox energy and hence reduce the metal oxygen covalency strength in the structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130◦C, 138◦C, 140◦C and 150◦C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two C H bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid–gas–solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol−1 to 368 kJ mol−1 for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mannitol is a polymorphic excipient which is usually used in pharmaceutical products as the beta form, although other polymorphs (alpha and delta) are common contaminants. Binary mixtures containing beta and delta mannitol were prepared to quantify the concentration of the beta form using FT-Raman spectroscopy. Spectral regions characteristic of each form were selected and peak intensity ratios of beta peaks to delta peaks were calculated. Using these ratios, a correlation curve was established which was then validated by analysing further samples of known composition. The results indicate that levels down to 2% beta could be quantified using this novel, non-destructive approach. Potential errors associated with quantitative studies using FT-Raman spectroscopy were also researched. The principal source of variability arose from inhomogeneities on mixing of the samples; a significant reduction of these errors was observed by reducing and controlling the particle size range. The results show that FT-Raman spectroscopy can be used to rapidly and accurately quantitate polymorphic mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a FT-Raman study (lambda(0) = 1064 nm) of naturally occurring polyester poly[(R)-3-hydroxybutyrate] (PHB) and its copolymer poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) with 5,8 and 12 mol % of HV (hydroxyvalerate). The FT-Raman spectra of films indicate that full width at half height of the band centered at 1725 cm(-1) and relative intensity of bands at 1443 and 1458 cm(-1) can be use to estimate the crystalline degree in film samples. The similarity between Raman spectra of molten PHB and PHBV and theirs CDCl(3) solutions suggested that molten polymers present similar conformation than polymers in solution. Raman data of these samples showed that bands at 1220, 1402, 1725, 2998 and 3009 cm(-1) are due to crystalline helical structure and the bands at 1453, 1740, 2881, 2938 and 2990 cm(-1) are originated from disordered domains. It is shown that composition of PHBV samples can be estimated by analyzing the ratio of the intensity of the bands at 2938 cm(-1) (nu C-H) and 1740 cm(-1) (nu C=O) in the spectra of solutions and of bands at 1354 (wCH(2)) and 1740 cm(-1) (nu C=O) in spectra of molten polymers. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman and IR experiments have been carried out on formamide (FA) and pyridine (Py) mixtures at different compositions. The appearance of a new Raman band at 996 cm(-1) (nu(1) region of Py), whose intensity depends on the FA concentration, is assigned to an FA: Py adduct and this result is in excellent agreement with those of other authors who employed noisy light-based coherent Raman scattering spectroscopy (I((2)) CARS). Another band at 1587 cm(-1) (nu(8) region of Py) has been observed for the first time by using Raman and IR spectroscopies. Its intensity shows the same dependence on the FA concentration and this fact allows us to also attribute it to an FA: Py adduct. The good relationship between the Raman and IR data demonstrates the potential of the vibrational spectroscopy for this kind of study. Owing to higher absolute Raman scattering cross section, the nu(1) region of Py has been chosen for the quantitative analysis and a stoichiometry of 1 : 1 FA: Py is reported. The experimental data are very well supported by the density functional theory (OFT) calculation, which was employed for the first time to the present system. Furthermore, the actual investigation shows an excellent agreement with those reported from computational calculations for similar systems. A comparison with our previous studies confirms that: the solvent dielectric constant determines the stoichiometry of a given Lewis acid-base adduct in the infinite dilution limit. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)