951 resultados para Frozen-thawed semen
Resumo:
Combining the data from conventional semen analysis with oocyte penetration assays should improve the assessment of the fertilizing ability of a semen sample. Thus, the objective of the present study was to evaluate the prognostic value of various semen parameters on the in vitro interactions between frozen-thawed canine sperm and homologous oocytes. Ten ejaculates from five stud dogs (two ejaculates/dog) were collected by digital manipulation. Semen samples were evaluated, extended in Tris-egg yolk-glycerol, frozen and stored in liquid nitrogen, and thawed several weeks later. Samples were evaluated for motility and sperm populations by computer-aided semen analysis (CASA), plasma membrane integrity (carboxy-fluorescein diacetate and propidium iodide), and sperm morphology (Bengal Rose). Thawed spermatozoa were also incubated with homologous oocytes for 18 h in an atmosphere of 5% CO2 and 95% air at 38 degrees C and sperm-oocyte interactions were evaluated. Simple linear regression models were calculated, with sperm parameters as independent variables and sperm-oocyte interactions as the dependent variable. There were significant associations between: percentage of oocytes bound to spermatozoa and beat cross frequency (BCF; R-2 = 63%); percentage of oocytes that interacted with spermatozoa and BCF (R-2 = 73%); and number of penetrated spermatozoa and velocity average pathway (VAP; R-2 = 64%) and velocity straight line (VSL; R-2 = 64%). Although plasma membrane integrity and sperm morphology had little prognostic value for in vitro interactions between canine frozen-thawed sperm and homologous oocytes, some motility patterns (evaluated by CASA) were predictive of in vitro sperm-oocyte interactions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this research was to evaluate the quality of frozen-thawed semen of Garut rams that cryopreserved with Tris extender containing the various β-carotene concentrations. Semen was collected from four mature Garut rams using artificial vagina once a week. Immediately after initial evaluation, semen was divided into four parts and diluted with Tris extender containing 5% glycerol + 0% (control), 0.001% (Kt0.001), 0.002% (Kt0.002), and 0.003% (Kt0.003) β-carotene, respectively. Semen was loaded in 0.25 ml mini straw with the concentration of 200 million motile sperm. Semen was equilibrated at 5ºC for three hours, then frozen and stored in liquid nitrogen container for 7 days. Quality of processed-semen including motility, live sperm, intact acrosomal cap (IAC), and intact plasma membrane (IPM) were evaluated after diluted, equilibrated, and thawed, respectively. Concentration of malondialdehide (MDA) semen after thawing were evaluated. Data were analyzed as completely randomized design with four treatments and nine replicates. Means values were compared by least significant difference test at 0.05 significant level. Results indicated that mean value of post thawing motility and live sperm for Kt0.002 (50.55% and 56.78%) were significantly higher (P<0.05) than Kt0.001 (46.11% and 52.89%), Kt0.003 (46.67% and 53.33%) and control (46.67% and 52.33%). Mean value of post thawing IAC and IPM for Kt0.002 (51.00% and 53.78%) were significantly higher (P<0.05) than control ( 47.11% and 48.44%), but not significantly different with Kt0.001 (49.00% and 50.00%), and Kt0.003 (48.89% and 49.67%). MDA concentration of frozen-thawed semen for Kt0.001 (3.37 mg/kg), Kt0.002 (3.80 mg/kg), and Kt0.003 (4.61 mg/kg) were significantly lower (P<0.05) than control (5.24 mg/kg). in conclusion, concentration of 0.002% β-carotene in Tris extender is the optimal dose in improving frozen semen quality of garut rams. (Animal Production 7(1): 6-13 (2005) Key Words : β-carotene, frozen-thawed semen, intact plasma membrane, MDA, Garut Rams
Resumo:
The aim of present study was to evaluate frozen canine semen with ACP-106 (R) (Powder Coconut Water) using an in vitro sperm-oocyte interaction assay (SOIA). Ten ejaculates from five stud dogs were diluted in ACP-106 (R) containing 20% egg yolk, submitted to cooling in a thermal box for 40 min and in a refrigerator for 30 min. After this period, a second dilution was performed using ACP-106 (R) containing 20% egg yolk and 12% glycerol. Samples were thawed at 38 degrees C for 1 min. Post-thaw motility was evaluated by light microscopy and by using a computer aided semen analysis (CASA). Plasma membrane integrity and sperm morphology/acrosomal status were evaluated by fluorescent probes (C-FDA/PI) and Bengal Rose respectively. Moreover, frozen-thawed semen was analysed by a SOIA. Subjective post-thaw motility was 52.0 +/- 14.8% and it was significant higher than the total motility estimated by CASA (23.0 +/- 14.8%) because this system considered the egg yolk debris as immotile spermatozoa. Although normal sperm rate and acrosomal integrity evaluated by Bengal Rose stain was 89.6 +/- 3.1 % and 94.3 +/- 3.1 %, respectively, post-thaw percentage of intact plasma membrane was only 35.1 +/- 14.3%. Regarding SOIA, the percentage of interacted oocytes (bound, penetrated and bound and/or penetrated) was 75.3%. Using regression analysis, it was found significant relations between some CASA patterns and data for SOIA. In conclusion, the freezing-thawing procedure using ACP-106 (R) was efficient for maintain the in vitro fertility potential of dog spermatozoa.
Resumo:
Frozen-thawed boar sperm holds the potential to have an impact on the future of the swine industry. Utilization of this technology could improve a swine producer’s ability to access top-tier genetics from around the world, to improve efficiency, profitability, and the quality of product to meet consumer demands. Effective application of frozen-thawed sperm can help reduce the potential risk associated with devastating economic loss due to the spread of disease. Frozen storage of boar sperm also provides a safeguard in the event of disease outbreaks, as genetic material from paternal lines can be preserved and banked for repopulation purposes. Historically these benefits have been masked by reduction in fertility measures such as litter size. The reduced fertility results from the damage sustained by the sperm cell during cryopreservation. However, increased understanding of this damage has lead to improved cryopreservation methods, ultimately increasing post-thaw viability and fertility. Enhancements in breeding technology have also resulted in a better understanding of the AI methods required to achieve acceptable farrowing rates and litter size. Fertility following AI with frozen-thawed sperm is approaching that of liquid stored sperm, and producers may soon reap the benefits of this technology. This thesis will outline the current swine industry, opportunities for utilizing frozen-thawed sperm, the main components of sperm, why they are susceptible to damage, and current freezing and breeding practices. Objective 1 was to develop a cryopreservation protocol for our lab that resulted in consistent post-thaw motility ( ≥ 40%) that would eventually be used by Illinois boar studs for domestic and international sale of frozen sperm. Evaluation with both manual microscopy and CASA methods were conducted to verify quality. A preliminary breeding trial was then conducted to test the fertility of sperm frozen with this method. There were 41 ejaculates from 23 boars used for freezing. Sperm were frozen at 1.4x109 sperm/mL, averaging 55.61.1% (meanSE) motility, following thaw. The samples assessed were not different (P>0.05) in motility when compared with manual or CASA systems, and results were most reliable at a 1:40 sperm dilution. In the preliminary breeding trial, gilts (n=14) were inseminated with either a single (n=10) or double (n=4) AI using 1, 2, or 4x109 motile, frozen-thawed sperm. Overall, the resulting pregnancy rates averaged 71.4% and numbers of normal fetuses per litter averaged 15.51.3 per litter. A feasibility study for freezing cost per ejaculate was estimated at $275/ejaculate or $11/dose of frozen-thawed semen at standard doses of 5x109 total frozen-thawed sperm. This cost estimate did not include genetic value, fixed equipment costs, depreciation, or variable lab space fees. Objective 2 focused on the proper methods for breeding with frozen-thawed boar sperm to achieve fertility. Our hypothesis was that increased numbers of inseminations and increased numbers of motile frozen-thawed sperm would improve pregnancy rate and litter size. Results showed acceptable fertility at high sperm numbers, but also the optimal method for insemination with the lowest dose tested. Gilts (n=111) responded to synchronization methods and were bred with 1, 2, or 4x109 motile frozen-thawed sperm from six boars using a single AI at 32 h, or a double AI, with the first AI at 24 and 32 h following estrus. Ultrasound was conducted at 12 h intervals to estimate the time of ovulation. On day 32 of gestation, overall pregnancy rate (73%) and number of normal fetuses per litter (10.80.5) across all treatments did not differ, and were not affected by number of motile sperm, or the interaction of number of motile sperm and number of inseminations. However, the number of inseminations tended to affect (P=0.14) the number of normal fetuses. Litter size increased with a double AI compared to single AI. Multiple inseminations helped to allow insemination to occur close to ovulation in response to variation in the time of ovulation. Both pregnancy rate and number of normal fetuses were greater when the time of the AI at 32 h occurred closer to the estimated time of ovulation (P<0.05). In addition, other factors such as presence of an abnormal ovary at day 30 decreased (P<0.001) pregnancy rate, while boar affected number of normal fetuses (P<0.01). Analysis of our data using a fertility index revealed doses of 2x109 motile sperm with multiple AI can achieve acceptable fertility with use of less sperm, when compared to AI using 4x109 motile sperm. The methods described here will investigate the potential for improved fertility when using frozen-thawed sperm, while accounting for variation in time of ovulation.
Resumo:
Semen manipulation and cryopreservation-thaw procedures may accelerate the generation of reactive oxygen species (ROS). Sperm exposure to large amounts of ROS has been shown to cause membrane lipid peroxidation and cellular injury to the sperm. The objective of this study was to overcome the ROS production in frozen-thawed ram semen by the addition of the antioxidants catalase or Trolox to semen following thawing. Frozen-thawed ram semen (100 x 10(6) sperm/straw) was supplemented with PBS (control group), 100 mu g/ml catalase, or 100 mu M Trolox/10(8) sperm (catalase and Trolox being dissolved in PBS) and incubated (37 degrees C) for 5 min. Under the experimental conditions used in this study, the catalase and Trolox antioxidants failed to protect the sperm from the spontaneous production of ROS. However, when lipid peroxidation was induced by iron (FeSO(4)), the addition of Trolox promoted a reduction (P < 0.05) in the formation of TBARS in the semen, compared to the control and catalase semen samples. The generation of TBARS and H(2)O(2) occurred in the extender alone, without the presence of sperm cells. In conclusion, the addition of Trolox to frozen-thawed ram semen could be beneficial as it decreases the production of TBARS when oxidative stress is induced. It is possible that a longer incubation period could lead to different results. The concentration of catalase also needs to be further evaluated. The extender could contribute to the oxidative stress of sperm, as it is a source of ROS during the cryopreservation of semen. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present work was to evaluate plasma membrane integrity, motility, vigor and morphology of fresh and frozen goat spermatozoa with or without seminal plasma. Semen samples were diluted in Tris solution, before and after thawing, with a combination of carboxifluorescein diacetate and propidium iodide. The results showed differences (P < 0.01) for motility and minor defects in the presence or absence of seminal plasma, for both fresh and frozen samples. Periods of collection had a significant effect on motility, probably due to changes in the photoperiod. Plasma membrane integrity was significantly reduced by the freezing process, whether seminal plasma was present or absent. In conclusion, removal of seminal plasma decreased motility and vigor rates in frozen samples. The photoperiod probably decreased the testosterone level, contributing negatively to the high percentage of sperm abnormalities, mainly damaged membranes. The use of fluorescent probes allowed a better estimation of the percentage of functional cells, instead of only estimating the percentage of motile cells or morphology defects. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In the present study, different freezing systems (Styrofoam box and Mini Digitcool ZH 400) and storage volumes (0.5- and 0.25-mL straws) were compared with regard to sperm kinetics and plasma membrane integrity of frozen and thawed semen. For that, three ejaculates from four animals were frozen in Styrofoam box and Mini Digitcool ZH 400 machine. The 0.5-mL straws were thawed at 46°C for 20 seconds, and the 0.25-mL straws were thawed at 46°C for 12 seconds. Statistical analysis was performed using program R of descriptive analysis box plot, followed by analysis of variance using PROC MIXED of SAS 9.1 package. Variances of 5% were considered as different. There was no interaction between the straw sizes and volumes; however, statistical differences were observed between the semen storage volumes. The 0.5-mL straws had higher total motility (%), progressive motility (%), average path velocity (μm/s), straight-line velocity (μm/s), curvilinear velocity (μm/s), and rapid sperm percentage (%) than the 0.25-mL straws. However, plasma membrane integrity analysis did not differ between the two straws. Thus, it is possible to conclude that equine sperm cryopreserved in 0.5-mL straws has better sperm kinetics than when stored in 0.25-mL straws. Additionally, it is possible to conclude that automated systems that enable faster freezing rates result in a seminal quality that is similar to the one obtained by the conventional system using Styrofoam boxes. © 2013 Elsevier Inc.
Resumo:
Sperm-freezing extenders supplemented with sugar or a combination of different sugars are widely used for the cryopreservation of nonhuman primate spermatozoa. Understanding which sugar or combination of sugars offers the highest level of cryoprotection w