948 resultados para Frontal disk
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AIM: To investigate the relationship between divine proportion and facial esthetics in frontal photographs as well as whether any of the 4 ratios for manipulation provide more favorable facial esthetics. MATERIAL AND METHODS: The sample comprised 20 frontal photographs of Caucasian individuals (11 males and 9 females). The photographs were digitized and stored on a compact disk. A photometric analysis was created with 7 facial segments that were measured on Image Tool software and 4 ratios between 2 facial segments calculated using Microsoft Excel. This manipulation led to 5 different photographs of the same individual: one photograph with no manipulation and the others with 1 of the ratios manipulated in the Deformer 2.0 to very close or equal to 1.618. Thereafter, the 5 photographs of all individuals were evaluated by 12 examiners. The examiners selected those photographs that were esthetically more pleasant. CONCLUSION: After evaluation, a chi-square test revealed a relationship between divine proportion and facial esthetics. Among the ratios selected, R1 and R2 provided more favorable facial esthetics.
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
Abstract—Corneal topography estimation that is based on the Placido disk principle relies on good quality of precorneal tear film and sufficiently wide eyelid (palpebral) aperture to avoid reflections from eyelashes. However, in practice, these conditions are not always fulfilled resulting in missing regions, smaller corneal coverage, and subsequently poorer estimates of corneal topography. Our aim was to enhance the standard operating range of a Placido disk videokeratoscope to obtain reliable corneal topography estimates in patients with poor tear film quality, such as encountered in those diagnosed with dry eye, and with narrower palpebral apertures as in the case of Asian subjects. This was achieved by incorporating in the instrument’s own topography estimation algorithm an image processing technique that comprises a polar-domain adaptive filter and amorphological closing operator. The experimental results from measurements of test surfaces and real corneas showed that the incorporation of the proposed technique results in better estimates of corneal topography, and, in many cases, to a significant increase in the estimated coverage area making such an enhanced videokeratoscope a better tool for clinicians.
Resumo:
Negative mood regulation (NMR) expectancies have been linked to substance problems in previous research, but the neurobiological correlates of NMR are unknown. In the present study, NMR was examined in relation to self-report indices of frontal lobe functioning, mood and alcohol use in 166 volunteers of both genders who ranged in age from 17 to 43 years. Contrary to expectations based on previous findings in addicts and problem drinkers, scores on the NMR scale did not differ between Low Risk and High Risk drinkers as defined by the Alcohol Use Disorders Identification Test (AUDIT). However, NMR scores were significantly negatively correlated with all three indices of frontal lobe dysfunction on the Frontal Systems Behavior Scale (FrSBe) Self-Rating Form as well as with all three indices of negative mood on the Depression Anxiety Stress Scales (DASS), which in turn were all positively correlated with FrSBe. Path analyses indicated that NMR partially mediated the direct effects of frontal lobe dysfunction (as indexed by FrSBe) on DASS Stress and DASS Depression. Further, the High Risk drinkers scored significantly higher on the Disinhibition and Executive Dysfunction indices of the FrSBe than did Low Risk drinkers. Results are consistent with the notion that NMR is a frontal lobe function.
Resumo:
Forensic imaging has been facing scalability challenges for some time. As disk capacity growth continues to outpace storage IO bandwidth, the demands placed on storage and time are ever increasing. Data reduction and de-duplication technologies are now commonplace in the Enterprise space, and are potentially applicable to forensic acquisition. Using the new AFF4 forensic file format we employ a hash based compression scheme to leverage an existing corpus of images, reducing both acquisition time and storage requirements. This paper additionally describes some of the recent evolution in the AFF4 file format making the efficient implementation of hash based imaging a reality.
Resumo:
Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.
Resumo:
Visual activity detection of lip movements can be used to overcome the poor performance of voice activity detection based solely in the audio domain, particularly in noisy acoustic conditions. However, most of the research conducted in visual voice activity detection (VVAD) has neglected addressing variabilities in the visual domain such as viewpoint variation. In this paper we investigate the effectiveness of the visual information from the speaker’s frontal and profile views (i.e left and right side views) for the task of VVAD. As far as we are aware, our work constitutes the first real attempt to study this problem. We describe our visual front end approach and the Gaussian mixture model (GMM) based VVAD framework, and report the experimental results using the freely available CUAVE database. The experimental results show that VVAD is indeed possible from profile views and we give a quantitative comparison of VVAD based on frontal and profile views The results presented are useful in the development of multi-modal Human Machine Interaction (HMI) using a single camera, where the speaker’s face may not always be frontal.
The backfilled GEI : a cross-capture modality gait feature for frontal and side-view gait recognition
Resumo:
In this paper, we propose a novel direction for gait recognition research by proposing a new capture-modality independent, appearance-based feature which we call the Back-filled Gait Energy Image (BGEI). It can can be constructed from both frontal depth images, as well as the more commonly used side-view silhouettes, allowing the feature to be applied across these two differing capturing systems using the same enrolled database. To evaluate this new feature, a frontally captured depth-based gait dataset was created containing 37 unique subjects, a subset of which also contained sequences captured from the side. The results demonstrate that the BGEI can effectively be used to identify subjects through their gait across these two differing input devices, achieving rank-1 match rate of 100%, in our experiments. We also compare the BGEI against the GEI and GEV in their respective domains, using the CASIA dataset and our depth dataset, showing that it compares favourably against them. The experiments conducted were performed using a sparse representation based classifier with a locally discriminating input feature space, which show significant improvement in performance over other classifiers used in gait recognition literature, achieving state of the art results with the GEI on the CASIA dataset.