923 resultados para Friedel-Crafts intramolecular chalcones
Resumo:
An intramolecular and asymmetric Friedel-Crafts alkylation of chalcones, exploiting mostly organocatalysts, in order to simultaneously obtain a new chiral center and a chiral axis.
Resumo:
The intramolecular Friedel-Crafts acylation reaction of 3-arylpropanoic acids to give 1-indanones can be effected in good yields under mild conditions (room temperature) by using niobium pentachloride. Our results indicate that NbCl5 acts both as reagent (to transform carboxylic acids into acyl chlorides) and as catalyst in the Friedel-Crafts cyclization.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
The synthesis of fine chemicals intermediates using Friedel-Crafts acylation is one of the most important methods in chemical technology. In this work, the acylation of 2-methoxynaphthalene with acetic anhydride using a silica-supported dodecatungstophosphoric acid catalyst (HPW/SiO2) and acetonitrila as solvent was studied, showing that this reaction is a feasible alternative to produce intermediaries to replace the current methods of production. The reactions using acetonitrile solvent showed yields greater than or equal to the reactions using traditional solvents such as nitrobenzene and dichloroethane. Finally, the modified Eley-Rideal mechanism was proposed to elucidate the experimental data obtained.
Resumo:
Aluminosilicate catalysts containing supported ZnCl2 and metal fluoride salts have been prepared using a sol-gel based route, tested and characterized. The activities of these ZnCl2 + metal fluoride catalysts, while greater than "Clayzic" (ZnCI2 supported on montmorillonite KIO) are not as good as supported ZnCl2 only supported on aluminosilicate. Alumina supports have also been prepared via a sol-gel route using various chemical additives to generate a mesoporous structure, loaded with ZnCl2 and tested for activity. The activities for these alumina-supported catalysts are also significantly higher than that of "Clayzic", an effective Friedel-Crafts catalyst. Characterizations of these two types of catalysts were done by magic angle spinning (MAS) NMR, diffuse reflectance infrared (DRIFT) spectroscopy and additionally for the alumina nitrogen adsorption studies were done. Supported aluminum trichloride was also investigated as an alternative to the traditional use of aluminum trichloride.
Resumo:
The liquid-phase Friedel-Crafts acylation of toluene using benzoyl chloride as benzoylating agent has heen carried out over Nix, Mn(l-x)Fe2 O4 (x=O, 0.2, 0.4, 0.6, 0.8 and 1.0) type systems under different reaction conditions. It is observed that the systems with high 'x' values are effective for the conversion of BOC and the selective formation of 4-MBP. Selectivity for 4-MBP over MnFe2O4 is more than 90% under the optimized reaction conditions. Sites of moderate acidity is effective in calalyzing the benzoylation reaction.
Resumo:
La reazione di Friedel-Crafts (F-C) rappresenta una delle più importanti e potenti vie per generare un nuovo legame C-C tra un sistema aromatico elettron-ricco e un appropriato elettrofilo. Durante gli ultimi anni l’organocatalisi si è dimostrata essere un’appropriata strategia per realizzare questa importante trasformazione in maniera enantioselettiva. Per quanto riguarda l’amminocatalisi, la reazione di F-C è stata insistentemente studiata su aldeidi α,β-insature utilizzando ammine secondarie chirali, ma ammine primarie basate sulla struttura degli alcaloidi della cincona sono catalizzatori privilegiati per l’attivazione di chetoni. In questa tesi, viene descritto lo sviluppo di un’alchilazione di F-C asimmetrica di appropriati indenoni attraverso la strategia per ione imminio. Opportuni naftoli sono stati utilizzati come nucleofili per ottenere con buone rese e stereocontrollo composti con possibili attività biologiche.
Resumo:
"This is the complete annotated bibliography for the shorter article published in Industrial and Engineering Chemistry, vol. 51, no. 9, September 1959, part II, page 1099."
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Study of the activity and enantioselectivity of alginate-based catalysts in Friedel-Crafts reactions
Resumo:
This thesis is part of a long-term project which aims to demonstrate for the first time that alginate gel beads can be used as chiral heterogeneous catalysts for enantioselective reactions. Alginate barium beads were prepared as previously optimized and applied to the Friedel-Crafts reaction between indoles and nitroalkenes. New substrates were tested, showing that the reaction can accommodate different nitroalkenes and indoles, affording the corresponding products with moderate yields and good enantioselectivities. However, aliphatic nitroalkenes cannot be used as they degrade under the catalytic reaction conditions. Preliminary study on the recyclability of the heterogeneous catalyst indicated a moderate stability of the catalyst, which can be used for few cycles with a slight erosion of enantioinducing power. Some directions for future improvements (storage and work-up solvent, use of ultrasonic bath) have been suggested.
Resumo:
This thesis describes the chemoenzymatic synthesis of three morphine alkaloids. The total synthesis of dihydrocodeine and hydrocodone was accomplished starting from bromobenzene in 16 and 17 steps, respectively. The key steps included a microbial oxidation of bromobenzene by E. coli JM109 (pDTG601A), a Kazmaier-Claisen rearrangement of glycinate ester to generate C-9 and C-14 stereo centers, a Johnson-Claisen rearrangement to set the C-13 quaternary center, and a C-10/C-11 ring closure via a Friedel-Crafts reaction. In addition, the total synthesis of ent-hydromorphone starting from β-bromoethylbenzene in 12 steps is also described. The key reactions included the enzymatic dihydroxylation of β-bromoethylbenzene to the corresponding cis-cyclohexadienediol, a Mitsunobu reaction, and an oxidative dearomatization followed by an intramolecular [4+2] cycloaddition.
Resumo:
[GRAPHICS] Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver(I)-promoted intramolecular Friedel-Crafts arylation of a functional group-specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative.
Resumo:
In this PhD-thesis, two methodologies for enantioselective intramolecular ring closing reaction on indole cores are presented. The first methodology represents a highly stereoselective alkylation of the indole N1-nitrogen, leading to 3,4-dihydro-pyrazinoindol-1-ones – a structural class which is known for its activity on the CNS and therefore of high pharmacological interest concerning related diseases. In this approach, N-benzyl cinchona-alkaloids were used for the efficient catalysis of intramolecular aza-Michael reactions. Furthermore, computational studies in collaboration with the research group Prof. Andrea Bottoni (Department of Chemistry “G. Ciamician”, Bologna) were accomplished in order to get insight into the key interactions between catalyst and substrate, leading to enantiomeric excesses up to 91%. The results of the calculations on a model system are in accordance with the experimental results and demonstrate the high sensibility of the system towards structural modifications. The second project deals with a metal catalyzed, intramolecular Friedel-Crafts (FC)-reaction on indolyl substrates, carrying a side chain which on its behalf is furnished with an allylic alcohol unit. Allylic alcohols are part of the structural class of “π-activated alcohols” – alcohols, which are more easily activated due to the proximity to a π-unit (allyl-, propargyl-, benzyl-). The enantioselective intramolecular cyclization event is catalyzed efficiently by employment of a chiral Au(I)-catalyst, leading to 1-vinyl- or 4-vinyl-tetrahydrocarbazoles (THCs) under the formation of water as byproduct. This striking and novel process concerning the direct activation of alcohols in catalytic FC-reactions was subsequently extended to similar precursors, leading to functionalized tetrahydro-β-carbolines. These two methodologies represent highly efficient approaches towards the synthesis of scaffolds, which are of enormous pharmaceutical interest and amplify the spectra of enantioselective catalytic functionalisations of indoles.
Resumo:
The transition metal-catalyzed allylic alkylation (Tsuji-Trost type reaction) is a powerful tool for C-C, C-N, and C-O bond formation, which has been widely applied to organic chemistry over the last decades. Typical substrates for this transformation are activated allylic compounds such as halides, esters, carbonates, carbamates, phosphates, and so on. However, use of these substrates is associated with the disadvantage of generating a stoichiometric amount of chemical waste. Furthermore, these starting materials have to be prepared in an extra step from the corresponding allylic alcohol. Thus, ideal substrates would be the allylic alcohols themselves, with water being the only byproduct in this case. However, the scarse propensity of the hydroxyl moiety to act as good leaving group has significantly limited their use so far. During the last decade significant efforts have been made in order to develop more atom-economical and environmentally-friendly allylic alkylation protocols by employing allylic alcohols directly. In this PhD dissertation two main projects addressing this topic are presented. “Project 1” deals with the development of new metal-catalyzed intramolecular Friedel-Crafts (FC) allylic alkylations of electron-rich (PAPER A), as well as challenging electron-poor arenes (PAPER B) with alcohols. In “Project 2”, gold(I)-catalyzed intramolecular and stereoselective allylic alkylation reactions are reported. In particular, a FC alkylation of indole-containing allylic alcohols is presented in PAPER C. While, an O-alkylation of aminol-containing allylic alcohols is reported in PAPER D. To the best of knowledge, these reports represent the first example of gold(I)-catalyzed stereoselective alkylations with alcohols.
Resumo:
The research work reported in this Thesis was held along two main lines of research. The first and main line of research is about the synthesis of heteroaromatic compounds with increasing steric hindrance, with the aim of preparing stable atropisomers. The main tools used for the study of these dynamic systems, as described in the Introduction, are DNMR, coupled with line shape simulation and DFT calculations, aimed to the conformational analysis for the prediction of the geometries and energy barriers to the trasition states. This techniques have been applied to the research projects about: • atropisomers of arylmaleimides; • atropisomers of 4-arylpyrazolo[3,4-b]pyridines; • study of the intramolecular NO2/CO interaction in solution; • study on 2-arylpyridines. Parallel to the main project, in collaboration with other groups, the research line about determination of the absolute configuration was followed. The products, deriving form organocatalytic reactions, in many cases couldn’t be analyzed by means of X-Ray diffraction, making necessary the development of a protocol based on spectroscopic methodologies: NMR, circular dichroism and computational tools (DFT, TD-DFT) have been implemented in this scope. In this Thesis are reported the determination of the absolute configuration of: • substituted 1,2,3,4-tetrahydroquinolines; • compounds from enantioselective Friedel-Crafts alkylation-acetalization cascade of naphthols with α,β-unsaturated cyclic ketones; • substituted 3,4-annulated indoles.