912 resultados para Frequency domain measurement
Resumo:
We address the problem of reconstructing a sparse signal from its DFT magnitude. We refer to this problem as the sparse phase retrieval (SPR) problem, which finds applications in tomography, digital holography, electron microscopy, etc. We develop a Fienup-type iterative algorithm, referred to as the Max-K algorithm, to enforce sparsity and successively refine the estimate of phase. We show that the Max-K algorithm possesses Cauchy convergence properties under certain conditions, that is, the MSE of reconstruction does not increase with iterations. We also formulate the problem of SPR as a feasibility problem, where the goal is to find a signal that is sparse in a known basis and whose Fourier transform magnitude is consistent with the measurement. Subsequently, we interpret the Max-K algorithm as alternating projections onto the object-domain and measurement-domain constraint sets and generalize it to a parameterized relaxation, known as the relaxed averaged alternating reflections (RAAR) algorithm. On the application front, we work with measurements acquired using a frequency-domain optical-coherence tomography (FDOCT) experimental setup. Experimental results on measured data show that the proposed algorithms exhibit good reconstruction performance compared with the direct inversion technique, homomorphic technique, and the classical Fienup algorithm without sparsity constraint; specifically, the autocorrelation artifacts and background noise are suppressed to a significant extent. We also demonstrate that the RAAR algorithm offers a broader framework for FDOCT reconstruction, of which the direct inversion technique and the proposed Max-K algorithm become special instances corresponding to specific values of the relaxation parameter.
Resumo:
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
Resumo:
The charactesistics of two-dimension spectra obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) with charge injection detection (CID) in frequency domain were studied in the present paper. The measurement spectra were Fourier transformed and the frequency distribution of the spectra was obtained. Results showed that the spectra in frequency domain could he divided into two parts:high frequency and low frequency signals. The later stood for measurement spectra and the former for background and noises. However, the high frequecny signals could not be smoothed simply to reduce noises because the background was deteriorated even though the spectral signal did not change significantly.
Resumo:
"June 1978."
Resumo:
Functional electrical impedance tomography (EIT) measures relative impedance change that occurs in the chest during a distinct observation period and an EIT image describing regional relative impedance change is generated. Analysis of such an EIT image may be erroneous because it is based on an impedance signal that has several components. Most of the change in relative impedance in the chest is caused by air movement but other physiological events such as cardiac activity change in end expiratory level or pressure swings originating from a ventilator circuit can influence the impedance signal. We obtained EIT images and signals in spontaneously breathing healthy adults, in extremely prematurely born infants on continuous positive airway pressure and in ventilated sheep on conventional mechanical or high frequency oscillatory ventilation (HFOV). Data were analyzed in the frequency domain and results presented after band pass filtering within the frequency range of the physiological event of interest. Band pass filtering of EIT data is necessary in premature infants and on HFOV to differentiate and eliminate relative impedance changes caused by physiological events other than the one of interest.
Resumo:
Fluorescence-enhanced optical imaging is an emerging non-invasive and non-ionizing modality towards breast cancer diagnosis. Various optical imaging systems are currently available, although most of them are limited by bulky instrumentation, or their inability to flexibly image different tissue volumes and shapes. Hand-held based optical imaging systems are a recent development for its improved portability, but are currently limited only to surface mapping. Herein, a novel optical imager, consisting primarily of a hand-held probe and a gain-modulated intensified charge coupled device (ICCD) detector, is developed towards both surface and tomographic breast imaging. The unique features of this hand-held probe based optical imager are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) reduce overall imaging time using a unique measurement geometry, and (iii) perform tomographic imaging for tumor three-dimensional (3-D) localization. Frequency-domain based experimental phantom studies have been performed on slab geometries (650 ml) under different target depths (1-2.5 cm), target volumes (0.45, 0.23 and 0.10 cc), fluorescence absorption contrast ratios (1:0, 1000:1 to 5:1), and number of targets (up to 3), using Indocyanine Green (ICG) as fluorescence contrast agents. An approximate extended Kalman filter based inverse algorithm has been adapted towards 3-D tomographic reconstructions. Single fluorescence target(s) was reconstructed when located: (i) up to 2.5 cm deep (at 1:0 contrast ratio) and 1.5 cm deep (up to 10:1 contrast ratio) for 0.45 cc-target; and (ii) 1.5 cm deep for target as small as 0.10 cc at 1:0 contrast ratio. In the case of multiple targets, two targets as close as 0.7 cm were tomographically resolved when located 1.5 cm deep. It was observed that performing multi-projection (here dual) based tomographic imaging using a priori target information from surface images, improved the target depth recovery over using single projection based imaging. From a total of 98 experimental phantom studies, the sensitivity and specificity of the imager was estimated as 81-86% and 43-50%, respectively. With 3-D tomographic imaging successfully demonstrated for the first time using a hand-held based optical imager, the clinical translation of this technology is promising upon further experimental validation from in-vitro and in-vivo studies.
Resumo:
We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.
Resumo:
In this paper, the commonly used switching schemes for sliding mode control of power converters is analyzed and designed in the frequency domain. Particular application of a distribution static compensator (DSTATCOM) in voltage control mode is investigated in a power distribution system. Tsypkin's method and describing function is used to obtain the switching conditions for the two-level and three-level voltage source inverters. Magnitude conditions of carrier signals are developed for robust switching of the inverter under carrier-based modulation scheme of sliding mode control. The existence of border collision bifurcation is identified to avoid the complex switching states of the inverter. The load bus voltage of an unbalanced three-phase nonstiff radial distribution system is controlled using the proposed carrier-based design. The results are validated using PSCAD/EMTDC simulation studies and through a scaled laboratory model of DSTATCOM that is developed for experimental verification
Resumo:
The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.
Resumo:
The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.