998 resultados para Freezing system
Resumo:
Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.
Resumo:
In the present study, different freezing systems (Styrofoam box and Mini Digitcool ZH 400) and storage volumes (0.5- and 0.25-mL straws) were compared with regard to sperm kinetics and plasma membrane integrity of frozen and thawed semen. For that, three ejaculates from four animals were frozen in Styrofoam box and Mini Digitcool ZH 400 machine. The 0.5-mL straws were thawed at 46°C for 20 seconds, and the 0.25-mL straws were thawed at 46°C for 12 seconds. Statistical analysis was performed using program R of descriptive analysis box plot, followed by analysis of variance using PROC MIXED of SAS 9.1 package. Variances of 5% were considered as different. There was no interaction between the straw sizes and volumes; however, statistical differences were observed between the semen storage volumes. The 0.5-mL straws had higher total motility (%), progressive motility (%), average path velocity (μm/s), straight-line velocity (μm/s), curvilinear velocity (μm/s), and rapid sperm percentage (%) than the 0.25-mL straws. However, plasma membrane integrity analysis did not differ between the two straws. Thus, it is possible to conclude that equine sperm cryopreserved in 0.5-mL straws has better sperm kinetics than when stored in 0.25-mL straws. Additionally, it is possible to conclude that automated systems that enable faster freezing rates result in a seminal quality that is similar to the one obtained by the conventional system using Styrofoam boxes. © 2013 Elsevier Inc.
Resumo:
This study tested the hypothesis derived from social pain theory (MacDonald & Leary, 2005) that pain affect serves as a signal of perceived social exclusion. Participants ranging in experience of persistent physical pain completed measures of pain affect, anxious and avoidant attachment, anxiety, and depression. Higher levels of pain affect were found to relate to higher levels of anxious, but not avoidant, attachment. Further, anxious attachment partially mediated the relation between pain affect and emotional distress. These data support the conclusion that one reason individuals with persistent pain experience anxiety and depression is because of heightened concerns over rejection. The data also support the conclusion that anxious attachment is more strongly related to the fight-flight-freezing system than avoidant attachment.
Resumo:
We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T-K(o)) in weakly swollen isotropic (L-i) and lamellar (L-alpha) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase L-c melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T-K(o), which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the L-i phase to an L-alpha phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the L-i phase constructed in the parameter space of shear rate ((gamma)) over dot vs. temperature exhibits L-i -> L-c and L-i -> L-alpha transitions above the equilibrium crystallization temperature (T-K(o)), in addition to the irreversible shear-driven nucleation of L-c in the L-i phase below T-K(o). In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.
Resumo:
Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (delta (P)) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity, delta (P) ) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, delta (P) shifts to higher values. This temperature and number density dependent value of delta (P) saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (delta (TP)). This value (delta (TP) similar to 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (delta (TP)) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting.
Resumo:
Quality related problems have become dominant in the seafood processing industry in Kerala. This has resulted in the rejection of seafood sent from India to many destinations. The latest being the total block listing of seafood companies from India from being exported to Europe and partial block listing by the US. The quality systems prevailed in the seafood industry in India were outdated and no longer in use in the developed world. According to EC Directive discussed above all the seafood factories exporting to European countries have to adopt HACCP. Based on this, EIA has now made HACCP system mandatory in all the seafood processing factories in India. This transformation from a traditional product based inspection system to a process control system requires thorough changes in the various stages of production and quality management. This study is conducted by the author with to study the status of the existing infrastructure and quality control system in the seafood industry in Kerala with reference to the recent developments in the quality concepts in international markets and study the drawbacks, if any, of the existing quality management systems in force in the seafood factories in Kerala for introducing the mandatory HACCP concept. To assess the possibilities of introducing Total Quality Management system in the seafood industry in Kerala in order to effectively adopt the HACCP concept. This is also aimed at improving the quality of the products and productivity of the industry by sustaining the world markets in the long run.
Resumo:
A microbiopsy system was developed to overcome long sampling times for tissues before they are cryo-fixed by high-pressure freezing. A commercially available biopsy gun was adapted to the needs of small-organ excisions, and biopsy needles were modified to allow small samples (0.6 mm x 1.2 mm x 0.3 mm) to be taken. Specimen platelets with a central slot of the same dimensions as the biopsy are used. A self-made transfer device (in the meantime optimized by Leica-Microsystems [Vienna, Austria]) coordinates the transfer of the excised sample from the biopsy needle into the platelet slot and the subsequent loading in a specimen holder, which is then introduced into a high-pressure freezer (Leica EM PACT; Leica Microsystems, Vienna, Austria). Thirty seconds preparation time is needed from excision until high-pressure freezing. Brain, liver, kidney and muscle excisions of anesthetised rats are shown to be well frozen.
Resumo:
A microbiopsy system for fast excision and transfer of biological specimens from donor to high-pressure freezer was developed. With a modified, commercially available, Promag 1.2 biopsy gun, tissue samples can be excised with a size small enough (0.6 mm x 1.2 mm x 0.3 mm) to be easily transferred into a newly designed specimen platelet. A self-made transfer unit allows fast transfer of the specimen from the needle into the specimen platelet. The platelet is then fixed in a commercially available specimen holder of a high-pressure freezing machine (EM PACT, Leica Microsystems, Vienna, Austria) and frozen therein. The time required by a well-instructed (but not experienced) person to execute all steps is in the range of half a minute. This period is considered short enough to maintain the excised tissue pieces close to their native state. We show that a range of animal tissues (liver, brain, kidney and muscle) are well preserved. To prove the quality of freezing achieved with the system, we show vitrified ivy leaves high-pressure frozen in the new specimen platelet.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.
Resumo:
Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.
Resumo:
A mean-field description of the glass transition in the hard-sphere system is obtained by numerically locating "glassy" minima of a model free-energy functional. These minima, characterized by inhomogeneous but aperiodic density distributions, appear as the average density is increased above the value at which equilibrium crystallization takes place. Investigations of the density distribution and local bond-orientational order at these minima yield results similar to those obtained from simulations.
Resumo:
The structure-property correlation in the lead-free piezoelectric (1 - x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0 < x <= 0.11), temperature, electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for the precritical compositions, 0 <= x <= 0.05, (ii) cubiclike for 0.06 <= x <= 0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07 <= x < 0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (similar to 50A degrees) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.