949 resultados para Freezing of gait
Resumo:
Freezing of gait (FOG) can be assessed by clinical and instrumental methods. Clinical examination has the advantage of being available to most clinicians; however, it requires experience and may not reveal FOG even for cases confirmed by the medical history. Instrumental methods have an advantage in that they may be used for ambulatory monitoring. The aim of the present study was to describe and evaluate a new instrumental method based on a force sensitive resistor and Pearson's correlation coefficient (Pcc) for the assessment of FOG. Nine patients with Parkinson's disease in the "on" state walked through a corridor, passed through a doorway and made a U-turn. We analyzed 24 FOG episodes by computing the Pcc between one "regular/normal" step and the rest of the steps. The Pcc reached ±1 for "normal" locomotion, while correlation diminished due to the lack of periodicity during FOG episodes. Gait was assessed in parallel with video. FOG episodes determined from the video were all detected with the proposed method. The computed duration of the FOG episodes was compared with those estimated from the video. The method was sensitive to various types of freezing; although no differences due to different types of freezing were detected. The study showed that Pcc analysis permitted the computerized detection of FOG in a simple manner analogous to human visual judgment, and its automation may be useful in clinical practice to provide a record of the history of FOG.
Resumo:
Objective: This study aimed to analyze and compare the role of a water-based exercise program versus a combination of water and callisthenic exercises on postural control, functional independence, and freezing of gait (FOG) in patients with mild to moderate Parkinson disease.Methods: Twenty-five community-dwelling participants with idiopathic Parkinson disease were recruited. Of these, 9 participants took part in a water-based program of physical exercises and the other 16 participants took part in a combined program that consisted of callisthenic exercises plus an aquatic exercise session. Both programs were 16 weeks in duration. The clinical evaluation assessed the festination by means of the FOG score test; postural control was verified by means of the balance test of the short physical performance battery, and the Spanish validated version of the Unified Parkinson's Disease Rating Scale part 2 was used to assess functional independence. Participants were evaluated before and after 16 weeks of both proposed programs.Results: The results showed improvement in FOG for both groups, although a significant main effect was observed only in the patients who performed the callisthenic exercise plus an aquatic exercise program. Postural control did not show significant improvements after both proposed physical exercise programs as soon as functional autonomy. Our preliminary results suggest that training sessions with the combination of water plus callisthenic exercises may be a useful physical rehabilitation strategy for individuals with mild to moderate Parkinson disease who have FOG.
Resumo:
Objective: To validate the freezing of gait questionnaire (FOG-Q) for a Brazilian population of Parkinson's disease (PD) patients. Methods: One hundred and seven patients with a diagnosis of PD were evaluated by shortened UPDRS motor scale (sUPDRm), Hoehn and Yahr (HY), Schwab and England scale (SE), Berg balance scale (BBS), falls efficacy scale international (FES-I), gait and balance scale (GABS), and the FOG-Q Brazilian version. Results: 47.7% of PD patients had FOG episodes; this group had worse scores on sUPDRSm, FOGQ, FES-I, BBS, GABS and FOG item of UPDRS when compared to the PD group without FOG. The internal consistency was 0.86, intra-rater 0.82 and inter-rater 0.78. The FOG-Q Brazilian version was significantly correlated with items related to gait and balance. The ROC curve was 0.94, the sensitivity was 0.90 and specificity was 0.92. Conclusion: Our study suggests that the FOG-Q Brazilian version is a reliable and valid instrument for assessing FOG in PD patients.
Resumo:
Current hypotheses postulate a relationship between executive dysfunction and freezing of gait (FOG) in Parkinson's disease (PD). Hitherto, most evidence comes from entirely clinical approaches, while knowledge about this relationship on the morphological level is sparse. The aim of this study was therefore to assess the overlap of gray matter atrophy associated with FOG and executive dysfunction in PD. We included 18 PD patients with FOG and 20 without FOG in our analysis. A voxel-based morphometry approach was used to reveal voxel clusters in the gray matter which were associated with FOG and executive dysfunction as measured by the Frontal Assessment Battery, respectively. Conjunction analysis was applied to detect overlaps of the associated patterns. FOG correlated with different cortical clusters in the frontal and parietal lobes, whereas those associated with the FAB scores were, although widespread, widely confined to the frontal lobe. Conjunction analysis revealed a significant cluster of gray matter loss in the right dorsolateral prefrontal cortex. We could show that the patterns of neurodegeneration associated with FOG and executive dysfunction (as measured by the FAB) share atrophic changes in the same cortical areas. However, there is also a considerable number of cortical areas where neurodegenerative changes are only unique for either sign. Particularly, the involvement of parietal lobe areas seems to be more specific for FOG.
Resumo:
Parkinson's disease (PD) is a neuro-degenerative disorder, the second most common after Alzheimer's disease. After diagnosis, treatments can help to relieve the symptoms, but there is no known cure for PD. PD is characterized by a combination of motor and no-motor dysfunctions. Among the motor symptoms there is the so called Freezing of Gait (FoG). The FoG is a phenomenon in PD patients in which the feet stock to the floor and is difficult for the patient to initiate movement. FoG is a severe problem, since it is associated with falls, anxiety, loss of mobility, accidents, mortality and it has substantial clinical and social consequences decreasing the quality of life in PD patients. Medicine can be very successful in controlling movements disorders and dealing with some of the PD symptoms. However, the relationship between medication and the development of FoG remains unclear. Several studies have demonstrated that visual or auditory rhythmical cuing allows PD patients to improve their motor abilities. Rhythmic auditory stimulation (RAS) was shown to be particularly effective at improving gait, specially with patients that manifest FoG. While RAS allows to reduce the time and the effects of FoGs occurrence in PD patients after the FoG is detected, it can not avoid the episode due to the latency of detection. An improvement of the system would be the prediction of the FoG. This thesis was developed following two main objectives: (1) the finding of specifics properties during pre FoG periods different from normal walking context and other walking events like turns and stops using the information provided by the inertial measurements units (IMUs) and (2) the formulation of a model for automatically detect the pre FoG patterns in order to completely avoid the upcoming freezing event in PD patients. The first part focuses on the analysis of different methods for feature extraction which might lead in the FoG occurrence.
Resumo:
Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.
Resumo:
The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R = 1.9 nm. The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R = 2 nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R = 1.9 nm. Thus, on cooling, the liquid nanodroplets with R < 1.9 nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.
Resumo:
Introduction: Changes in gait cadence caused by challenging situations in daily life might induce higher demand for strength and propulsion in diabetic neuropathic (DN) subjects. Methods: Forty-six subjects (healthy and DN) walked at two cadences (self-selected and 25% higher). Kinematic and electromyographic data were obtained from lower limbs and compared across the gait cycle. Results: DN subjects showed a delayed peak in plantarflexor activity along the whole cycle (irrespective of cadence) compared with healthy subjects. However, during the imposed cadence, DN individuals showed reduced ankle range of motion along the entire cycle compared with the self-selected condition and healthy individuals walking at both cadences (P = 0.002). Conclusions: These findings suggest that when diabetic individuals face a new challenging situation that induces a higher demand for muscle strength and propulsion, the necessary range of motion and neuromuscular control around distal joints are insufficient. Muscle Nerve 44: 258-268, 2011
Resumo:
Objective: The purpose of this study was to analyze the range of movement of the ankle and the vertical ground reaction force involved in gait among diabetic patients with and without peripheral neuropathy. Sample and Method: 36 individuals were divided into three groups: Control group - CG: 10 individuals without diabetes, Diabetic group - DG: 10 individuals with diabetes without peripheral neuropathy and Neuropathy, and Diabetic neuropathic group - DNG: 16 individuals with diabetes and peripheral diabetic neuropathy. Gait - AMTI (R) OR6/6m and range of tibiotarsal joint movement - System Vicom 640 (R) was carried out in all the participants. Results: The first and second vertical ground reaction force peaks were statistically higher in the neuropathy group, and the range of ankle motion was lower in the Diabetes and Neuropathy groups. Conclusion: The range of movement of the tibiotarsal joint is lower in diabetics, regardless of the presence or absence of peripheral neuropathy, and diabetics with peripheral neuropathy show an increase in the first and second vertical ground reaction force peaks during walking.
Resumo:
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Resumo:
Objective: To analyze the relation between contralesional and ipsilesional limbs in subjects with stroke during step-to-step transition of walking. Design: Observational, transversal, analytical study with a convenience sample. Setting: Physical medicine and rehabilitation clinic. Participants: Subjects (nZ16) with poststroke hemiparesis with the ability to walk independently and healthy controls (nZ22). Interventions: Not applicable. Main Outcome Measures: Bilateral lower limbs electromyographic activity of the soleus (SOL), gastrocnemius medialis, tibialis anterior, biceps femoris, rectus femoris, and vastus medialis (VM) muscles and the ground reaction force were analyzed during double-support and terminal stance phases of gait. Results: The propulsive impulse of the contralesional trailing limb was negatively correlated with the braking impulse of the leading limb during double support (rZ .639, PZ.01). A moderate functional relation was observed between thigh muscles (rZ .529, PZ.035), and a strong and moderate dysfunctional relation was found between the plantar flexors of the ipsilesional limb and the vastus medialis of the contralesional limb, respectively (SOL-VM, rZ .80, P<.001; gastrocnemius medialis-VM, rZ .655, PZ.002). Also, a functional moderate negative correlation was found between the SOL and rectus femoris muscles of the ipsilesional limb during terminal stance and between the SOL (rZ .506, PZ.046) and VM (rZ .518, PZ.04) muscles of the contralesional limb during loading response, respectively. The trailing limb relative impulse contribution of the contralesional limb was lower than the ipsilesional limb of subjects with stroke (PZ.02) and lower than the relative impulse contribution of the healthy limb (PZ.008) during double support. Conclusions: The findings obtained suggest that the lower performance of the contralesional limb in forward propulsion during gait is related not only to contralateral supraspinal damage but also to a dysfunctional influence of the ipsilesional limb.
Resumo:
This study aims to compare two methods of assessing the postural phase of gait initiation as to intrasession reliability, in healthy and post-stroke subjects. As a secondary aim, this study aims to analyse anticipatory postural adjustments during gait initiation based on the centre of pressure (CoP) displacements in post-stroke participants. The CoP signal was acquired during gait initiation in fifteen post-stroke subjects and twenty-three healthy controls. Postural phase was identified through a baseline-based method and a maximal displacement based method. In both healthy and post-stroke participants higher intra-class correlation coefficient and lower coefficient of variation values were obtained with the baseline-based method when compared to the maximal displacement based method. Post-stroke participants presented decreased CoP displacement backward and toward the first swing limb compared to controls when the baseline-based method was used. With the maximal displacement based method, there were differences between groups only regarding backward CoP displacement. Postural phase duration in medial-lateral direction was also increased in post-stroke participants when using the maximal displacement based method. The findings obtained indicate that the baseline-based method is more reliable detecting the onset of gait initiation in both groups, while the maximal displacement based method presents greater sensitivity for post-stroke participants.
Resumo:
Biomechanical gait parameters—ground reaction forces (GRFs) and plantar pressures—during load carriage of young adults were compared at a low gait cadence and a high gait cadence. Differences between load carriage and normal walking during both gait cadences were also assessed. A force plate and an in-shoe plantar pressure system were used to assess 60 adults while they were walking either normally (unloaded condition) or wearing a backpack (loaded condition) at low (70 steps per minute) and high gait cadences (120 steps per minute). GRF and plantar pressure peaks were scaled to body weight (or body weight plus backpack weight). With medium to high effect sizes we found greater anterior-posterior and vertical GRFs and greater plantar pressure peaks in the rearfoot, forefoot and hallux when the participants walked carrying a backpack at high gait cadences compared to walking at low gait cadences. Differences between loaded and unloaded conditions in both gait cadences were also observed.
Resumo:
This study aimed to develop appropriate changes in a pair of shoes in order to improve the gait of an individual selected for this case study. This analysis took into account ergonomic aspects, namely those relating to the individual’s anthropometrics. Gait analysis was done with the adapted footwear both before and after intervention.A conventional X-ray was performed, which revealed a 29-mm left lower limb shortening and possible foot adduction. The anthropometric assessment confirmed a 27-mm asymmetry between the left knee and foot.Corrective changes were implemented in the left boot, with a 20-mm increase in the plantar aspect and approximately 30-mm in the calcaneus area.The pressure-mapping system WalkinSense was used for the kinetic gait analysis. Results showed some improvement in plantar pressure distribution after corrective changes in footwear. Peak pressure in the left foot decreased from 2.8kg/cm2 to 1.6kg/cm2. The second peak also showed a marked decrease. The right foot presented with a reduction in peak plantar pressure from 2.7kg/cm2 to 2.3kg/cm2.After identifying asymmetries, the associated pathologies and modifyingthe footwear, a kinetic analysis of gait before and after altering the footwear was undertaken, which showed improvements in the gait. According to the obtained results, it was possible to demonstrate that the initially proposed objectives were achieved, i.e., the changes in footwear resulted in an improvement of the analyzed individual.