944 resultados para Free-vibration test
Resumo:
In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper free vibration characteristics of a centrally kinked cantilever beam of unit mass carrying masses at the kink (m(k)) and at the tip (m(t)) are analyzed. Frequency factors are presented for the first two modes for different combinations of m(k),m(t) and the kink angle delta. A relationship of the form f(m(k),m(t), delta) = m(k) + m(t)(4 + 10/3 cos delta+ 2/3 cos(2) delta)=const appears to give the same fundamental frequency for a given delta and different combinations of [m(k), m(t)]. Mode shapes as well as bending moments at the support and at the kink are also discussed. The utility of a discrete beam model in understanding the free vibration characteristics is also highlighted.
Resumo:
Free vibration analysis is carried out to study the vibration characteristics of composite laminates using the modified shear deformation, layered, composite plate theory and employing the Rayleigh-Ritz energy approach. The analysis is presented in a unified form so as to incorporate all different combinations of laminate boundary conditions and with full coverage with regard to the various design parameters of a laminated plate. A parametric study is made using a beam characteristic function as the admissible function for the numerical calculations. The numerical results presented here are for an example case of fully clamped boundary conditions and are compared with previously published results. The effect of parameters, such as the aspect ratio of plates, ply-angle, number of layers and also the thickness ratios of plies in laminates on the frequencies of the laminate, is systematically studied. It is found that for anti-symmetric angle-ply or cross-ply laminates unique numerical values of the thickness ratios exist which improve the vibration characteristics of such laminates. Numerical values of the non-dimensional frequencies and nodal patterns, using the thickness ratio distribution of the plies, are then obtained for clamped laminates, fabricated out of various commonly used composite materials, and are presented in the form of the design curves.
Resumo:
Free vibrationo f annularp latesh asb eens tudiedu singt he methodo f initial functionsN. umericalr esultso f the naturalf requencieasr e obtainedfo r two typicals upportc onditionsT. he presenrt esultsd epartf rom the classicapll atet heoryf or higherm odesa s wella sf or thickerp latesb, ut is in gooda greemenwt ith Mindlin's improve,pdl ateth eory.
Resumo:
Free vibration of thick rectangular plates is investigated by using the “method of initial functions” proposed by Vlasov. The governing equations are derived from the three-dimensional elastodynamic equations. They are obtained in the form of series and theories of any desired order can be constructed by deleting higher terms in the infinite order differential equations. The numerical results are compared with those of classical, Mindlin, and Lee and Reismann solutions.
Resumo:
Frequencies of free vibration of rectangular plates of arbitrary thickness, with different support conditions, are calculated by using the Method of Initial Functions (MIF), proposed by Vlasov. Sixth and fourth order MIF theories are used for the solution. Numerical results are presented for three square plates for three thickness ratios. The support conditions considered are (i) three sides simply supported and one side clamped, (ii) two opposite sides simply supported and the other two sides clamped and (iii) all sides clamped. It is found that the results produced by the MIF method are in fair agreement with those obtained by using other methods. The classical theory gives overestimates of the frequencies and the departures from the MIF results increase for higher modes and larger thickness ratios.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
It is well known that the analysis of vibration of orthogonally stiffened rectangular plates and grillages may be simplified by replacing the actual structure by an orthotropic plate. This needs a suitable determination of the four elastic rigidity constants Dx, Dy, Dxy, D1 and the mass {Mathematical expression} of the orthotropic plate. A method is developed here for determining these parameters in terms of the sectional properties of the original plate-stiffener combination or the system of interconnected beams. Results of experimental work conducted on aluminium plates agree well with the results of the theory developed here.
Resumo:
Free vibration of circular plates of arbitrary thickness is investigated using the method of initial functions. State-space approach is used to derive the governing equations of the above method. The formulation is such that theories of any desired order can be obtained by deleting higher terms in the infinite-order differential equations. Numerical results are obtained for flexural and extensional vibration of circular plates. Results are also computed using Mindlin's theory and they are in agreement with the present analysis.
Resumo:
The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.
Resumo:
The state space approach is extended to the two dimensional elastodynamic problems. The formulation is in a form particularly amenable to consistent reduction to obtain approximate theories of any desired order. Free vibration of rectangular beams of arbitrary depth is investigated using this approach. The method does not involve the concept of the shear coefficientk. It takes into account the vertical normal stress and the transverse shear stress. The frequency values are calculated using the Timoshenko beam theory and the present analysis for different values of Poisson's ratio and they are in good agreement. Four cases of beams with different end conditions are considered.Die Zustandsraum-Technik wird auf zweidimensionale elastodynamische Probleme ausgedehnt. Die Formulierung ist besonders geeignet für die Aufstellung von Näherungstheorien beliebigen Grades. Freie Schwingungen von Rechteckbalken beliebiger Höhe wurden mit Hilfe dieser Technik untersucht. Das Verfahren umgeht den Begriff des Schubbeiwertsk. Es berücksichtigt die senkrechte Normalbeanspruchung und die Querkraft. Die Frequenzwerte werden mit Hilfe der Balkentheorie von Timoshenko und der vorliegenden Analyse berechnet, und zwar für verschiedene Werte der Querdehnzahl. Die berechneten Werte befinden sich in guter Übereinstimmung. Vier Fälle von Balken mit verschiedenen Endbedingungen werden untersucht.
Resumo:
The free vibration of strings with randomly varying mass and stiffness is considered. The joint probability density functions of the eigenvalues and eigenfunctions are characterized in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical solutions of these equations based on the method of stochastic averaging are obtained. The effects of the mean and autocorrelation of the mass process are included in the analysis. Numerical results for the marginal probability density functions of eigenvalues and eigenfunctions are obtained and are found to compare well with Monte Carlo simulation results. The random eigenvalues, when normalized with respect to their corresponding deterministic values, are observed to tend to become first order stochastically stationary with respect to the mode count.