952 resultados para Free-surface Flows
Resumo:
Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.
Resumo:
A class of exact, self-similar, time-dependent solutions describing free surface flows under gravity is found which extends the self-propagating class of solutions discovered earlier by Freeman (1972) to those which decay with time.
Resumo:
A comprehensive exact treatment of free surface flows governed by shallow water equations (in sigma variables) is given. Several new families of exact solutions of the governing PDEs are found and are shown to embed the well-known self-similar or traveling wave solutions which themselves are governed by reduced ODEs. The classes of solutions found here are explicit in contrast to those found earlier in an implicit form. The height of the free surface for each family of solutions is found explicitly. For the traveling or simple wave, the free surface is governed by a nonlinear wave equation, but is arbitrary otherwise. For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed; in another case, the free surface is a horizontal plane while the flow underneath is a sine wave. The existence of simple waves on shear flows is analytically proved. The interaction of large amplitude progressive waves with shear flow is also studied.
Resumo:
Exact free surface flows with shear in a compressible barotropic medium are found, extending the authors' earlier work for the incompressible medium. The barotropic medium is of finite extent in the vertical direction, while it is infinite in the horizontal direction. The ''shallow water'' equations for a compressible barotropic medium, subject to boundary conditions at the free surface and at the bottom, are solved in terms of double psi-series, Simple wave and time-dependent solutions are found; for the former the free surface is of arbitrary shape while for the latter it is a damping traveling wave in the horizontal direction, For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed. In the case of an isothermal medium, when gamma = 1, we again find simple wave and time-dependent solutions.
Resumo:
Accurate representation of the coupled effects between turbulent fluid flow with a free surface, heat transfer, solidification, and mold deformation has been shown to be necessary for the realistic prediction of several defects in castings and also for determining the final crystalline structure. A core component of the computational modeling of casting processes involves mold filling, which is the most computationally intensive aspect of casting simulation at the continuum level. Considering the complex geometries involved in shape casting, the evolution of the free surface, gas entrapment, and the entrainment of oxide layers into the casting make this a very challenging task in every respect. Despite well over 30 years of effort in developing algorithms, this is by no means a closed subject. In this article, we will review the full range of computational methods used, from unstructured finite-element (FE) and finite-volume (FV) methods through fully structured and block-structured approaches utilizing the cut-cell family of techniques to capture the geometric complexity inherent in shape casting. This discussion will include the challenges of generating rapid solutions on high-performance parallel cluster technology and how mold filling links in with the full spectrum of physics involved in shape casting. Finally, some indications as to novel techniques emerging now that can address genuinely arbitrarily complex geometries are briefly outlined and their advantages and disadvantages are discussed.
Resumo:
In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development of an implicit finite difference method for solving transient three-dimensional incompressible free surface flows. To reduce the CPU time of explicit low-Reynolds number calculations, we have combined a projection method with an implicit technique for treating the pressure on the free surface. The projection method is employed to uncouple the velocity and the pressure fields, allowing each variable to be solved separately. We employ the normal stress condition on the free surface to derive an implicit technique for calculating the pressure at the free surface. Numerical results demonstrate that this modification is essential for the construction of methods that are more stable than those provided by discretizing the free surface explicitly. In addition, we show that the proposed method can be applied to viscoelastic fluids. Numerical results include the simulation of jet buckling and extrudate swell for Reynolds numbers in the range [0.01, 0.5]. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110: 171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
A parallel technique, for a distributed memory machine, based on domain decomposition for solving the Navier-Stokes equations in cartesian and cylindrical coordinates in two dimensions with free surfaces is described. It is based on the code by Tome and McKee (J. Comp. Phys. 110 (1994) 171-186) and Tome (Ph.D. Thesis, University of Strathclyde, Glasgow, 1993) which in turn is based on the SMAC method by Amsden and Harlow (Report LA-4370, Los Alamos Scientific Laboratory, 1971), which solves the Navier-Stokes equations in three steps: the momentum and Poisson equations and particle movement, These equations are discretized by explicit and 5-point finite differences. The parallelization is performed by splitting the computation domain into vertical panels and assigning each of these panels to a processor. All the computation can then be performed using nearest neighbour communication. Test runs comparing the performance of the parallel with the serial code, and a discussion of the load balancing question are presented. PVM is used for communication between processes. (C) 1999 Elsevier B.V. B.V. All rights reserved.