868 resultados para Free electron theory of metals.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical conductivity of the Anderson impurity mode l has been calculated by emp l oying the slave boson technique and an expansion in powers of l i N, where N is the d egeneracy o f the f electron level . This method has been used to find the effective mass of the conduction electrons for temperatures above and below the Kondo tempera ture. For low temperatures, the mass enhancement is f ound to be large while a t high t emperatures, the mass enhancement is sma ll. The conductivity i s f ound to be Drude like with frequency dependent effective mass and scattering time for low independent effective mass and temperatures and scattering time f requency for high t emperatures. The behavior of both the effective mass and the conductivity is in qualitative agreement with experimental r esul t s .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secondary electron emission of dielectrics usually is measured by the pulse method, in which the dielectric is irradiated with short pulses of electrons. Attempts to use a dynamic method, in which the dielectric is irradiated continuously, have failed because the dielectric becomes charged and this charge interferes with the emission process. The dynamic method can, however, be applied to metals where volume charges are prevented. This article reports dynamic measurements of the total secondary emission yield from stainless steel, platinum, and aluminum and compares them with results from the current pulse method. In order to apply the dynamic method to metals a simple but important change in the setup was introduced: a dielectric slab was placed between the electrode and the metallic sample, which permitted the sample surface potential and therefore the energy of the incident electrons to change continuously. Unlike for dielectrics, the emission curves for metals are identical when obtained by the two methods. However, for a sample with deliberately oxidized surfaces the total secondary emission yield is smaller when measured with the dynamic method as compared with the pulse method, just as happens for dielectrics. (C) 2000 American Institute of Physics. [S0021-8979(00)03413-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical expression is derived for the electron thermionic current from heated metals by using a non equilibrium, modified Kappa energy distribution for electrons. This isotropic distribution characterizes the long high energy tails in the electron energy spectrum for low values of the index ? and also accounts for the Fermi energy for the metal electrons. The limit for large ? recovers the classical equilibrium Fermi-Dirac distribution. The predicted electron thermionic current for low ? increases between four and five orders of magnitude with respect to the predictions of the equilibrium Richardson-Dushmann current. The observed departures from this classical expression, also recovered for large ?, would correspond to moderate values of this index. The strong increments predicted by the thermionic emission currents suggest that, under appropriate conditions, materials with non equilibrium electron populations would become more efficient electron emitters at low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have been studied by pulse radiolysis. The results show that pyronaridine is readily oxidised to an intermediate semi-iminoquine radical by inorganic and organic free radicals, including those derived from tryptophan and acetaminophen. The pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results indicate that the one-electron reduction potential of the pyronaridine radical at neutral pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The pyronaridine radical decays to produce the iminoquinone, detected by electrospray mass spectrometry, in a second-order process that density functional theory (DFT) calculations (UB3LYP/6-31+G*) suggest is a disproportionation reaction. Important calculated dimensions of pyronaridine, its phenoxyl and aminyl radical, as well as the iminoquinone, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An asymptotic analysis of the Langmuir-probe problem in a quiescent, fully ionized plasma in a strong magnetic field is performed, for electron cyclotron radius and Debye length much smaller than probe radius, and this not larger than either ion cyclotron radius or mean free path. It is found that the electric potential, which is not confined to a sheath, controls the diffusion far from the probe; inside the magnetic tube bounded by the probe cross section the potential overshoots to a large value before decaying to its value in the body of the plasma. The electron current is independent of the shape of the body along the field and increases with ion temperature; due to the overshoot in the potential, (1) the current at negative voltages does not vary exponentially, (2) its magnitude is strongly reduced by the field, and (3) the usual sharp knee at space potential, disappears. In the regions of the C-V diagram studied the ion current is negligible or unaffected by the field. Some numerical results are presented.The theory, which fails beyond certain positive voltage, fields useful results for weak fields, too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of a spherical grid as electron collector at the anodic end of a tether, as recently proposed, is considered. The standard analysis of space-charge limited current to a solid sphere (with neither magnetic nor plasma-motion effects), which has been shown to best fit TSS1R in-orbit results at very high bias, is used to determine effects from grid transparency on current collected; the analysis is first reformulated in the formalism recently introduced in the two-dimensional analysis of bare-tethers. A discussion of the electric potential created by a spherical grid in vacuum is then carried out; it is shown that each grid-wire collects current well below its maximum OML current, the effective grid transparency being close to its optical value. Formulae for the current to a spherical grid, showing the effects of grid transparency, is determined. A fully consistent analysis of electric potential and electron density, outside and inside the grid, is completed.