999 resultados para Free Ammonia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

垃圾卫生填埋是国内外城市垃圾的主要处置方法。垃圾渗滤液是渗入填埋场垃圾的降水混合垃圾降解过程中产生的物质而形成的混合物,是垃圾填埋场向环境排放的主要污染物。渗滤液由于其所含高浓度有机和无机污染物,且其中很多物质有生物毒性或难生物降解,难于治理。特别是到填埋晚期,渗滤液中高浓度的氨氮更是增加了治理的难度。渗滤液场外硝化-原位反硝化是填埋场氮管理的新途径。本文利用从环境中筛选出优势硝化功能菌对渗滤液中的高浓度氨氮进行生物硝化,经硝化后的渗滤液回灌至以垃圾柱模拟的生物反应器填埋场,在填埋场内实现原位反硝化。 上述目标通过以下两部分来实现: 第一部分:渗滤液场外硝化。首先从污水厂的硝化污泥中富集并筛选出硝化功能菌,在模拟氨氮废水中优化。将驯化的硝化功能菌接种于连续式完全混合反应器(CSTR)进行高氨氮渗滤液硝化研究。在200余天的连续运行中,反应器硝化和有机物去除效果良好。在最大氨氮负荷和有机物负荷分别为0.65 g N l-1 d-1 和3.84 g COD l-1 d-1时,氨氮和COD去除率分别高于99%和57%。实验过程中发现,游离氨(FA)和溶解氧(DO)浓度对反应器中亚硝酸盐的积累影响很大。 第二部分:渗滤液原位反硝化。本文利用一个垃圾填充柱模拟生物反应器填埋场,研究了硝化渗滤液回灌对垃圾降解的影响,和回灌的硝化渗滤液中TON(总氧化态氮)对填埋场生物反应器产甲烷作用的影响。最后利用变性梯度凝胶电泳(DGGE)分析了硝化渗滤液回灌对垃圾填埋场菌群结构的影响。结果表明:回灌的TON被完全还原,反硝化为主要反应,最大TON负荷为28.6 mg N kg-1 TS d-1。当垃圾柱TON负荷大于11.4 mg N kg-1 TS d-1时,出现了产甲烷抑制,抑制作用随TON负荷的增加而加强。在此过程中,反硝化逐渐代替产甲烷作用成为填埋场内垃圾降解的主要反应,且更多产生的是清洁的氮气,而非温室气体甲烷。直到实验结束时,回灌硝化渗滤液的垃圾柱的甲烷产量仅相当于对照的2.5%,并且回灌的硝化渗滤液还加速了填埋场垃圾的降解与稳定。通过DGGE进行菌群结构分析发现,由于TON对填埋场的长期作用,反硝化菌增多而产甲烷菌减少。 Landfill still remains the chief method for MSW management around the world. Leachate is a mixture of rainfall permeating through landfill and organic and inorganic matters generated during decomposition of the wastes in the landfills, characterized as highly complicated and refractory wastewater. Ex-situ nitrification and sequential in-situ denitrification represents a novel approach to nitrogen management at landfills. In the present paper, nitrification was carried out in a continuous stirred tank reactor (CSTR) inoculated with nitrifying bacteria which were isolated from municipal WWTP of Chengdu city. The nitrified leachate from CSTR was recirculated to a lab-scale municipal solid waste (MSW) column where in-situ denitrification took place. The above object was achived through two parts as following: First, ex-situ nitification of leachate. After acclimated in simulated wastewater for 3 month, nitrifying bacteria isolated from WWTP nitrifying sludge were added to the CSTR for nitrification. The results over 200 days showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l-1 d-1 and 3.84 g COD l-1 d-1, respectively. The ammonia and COD removal was over 99% and 57%, respectively. Moreover, the effects of free ammonia (FA) and dissolved oxygen (DO) on nitrification were investigated. Second, in-situ denitrification was studied in a municipal solid waste (MSW) column. Variation of nitrified leachate and its effects on the decomposition of municipal solid waste (MSW) were studied in a lab-scale MSW column to which nitrified leachate was recirculated. Additionally, DGGE was employed to investigate the microbial community of both MSW columns. The results suggested: complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON load of 28.6 mg N kg-1 TS d-1 and denitrification was the main reaction responsible. Methanogenesis inhibition was observed while TON load was over 11.4 mg N kg-1 TS d-1 and the inhibition was enhanced with the increase of TON load. Denitrification gradually took over methanogenesis to become the main reaction responsible for decomposition of MSW while nitrogen gas, a clean byproduct, was generated instead. Till the end of the experiment, the average weekly methane production in the denitrification column was as low as 2.5% of that of the control, and the rate of decompition and stability of MSW was accelerated by the recirculation of the nitrified leachate.Owing to long term exposure of nitrified leachate to landfill, denitrifying bacteria increased and methanogen decreased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the ethanol addition as a strategy for start-up and acclimation of a pilot scale (1300 L) anaerobic sequencing batch biofilm reactor (AnSBBR) for the treatment of municipal landfill leachate with seasonal biodegradability variations. The treatment was carried out at ambient temperature (23.8 ± 2.1 °C) in the landfill area. In a first attempt, the leachate collected directly from landfill showed to be predominantly recalcitrant to anaerobic treatment and the acclimation was not possible. In a second attempt, adding ethanol to leachate, the reactor was successfully acclimated. After acclimation, without ethanol addition, the CODTotal influent ranged from 4970 to 13040 mg L-1 and the removal efficiencies ranged from 12.1% to 70.7%. A final test was carried out increasing the ammonia and free-ammonia concentration from 2486 mgN L-1 and 184 mgN L-1 to 4519 mgN L-1 and 634 mgN L-1, respectively, with no expressive inhibition verified. The start-up strategy was found to be feasible, providing the acclimation of the biomass in the AnSBBR, and maintaining the biomass active even when the leachate was recalcitrant. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium between cuprous ion, cupric ion and metallic copper has been studied using polarographic and redox potential measurements, by reducing cupric ion with copper gauze until equilibrium. Using the well-defined anodic diffusion current plateau, an amperometric method for estimating cuprous copper based on the titration of cuprous ion with dichromate or permanganate has been developed. The diffusion current constant and the disproportionation constant of cuprous ion and the standard potential for the reduction reaction of Cu2+ → Cu+ have been determined. Polarograms have been taken after reducing cupric complexes of ammonia and methylamine with copper until equilibrium. In the case of the copper-ammonia system, reduction to the cuprous state is practically complete while in the case of the cupric-methylamine system, the first cathodic wave occurs to some extent. A new method, called the polarographic-redox potential method, for determining the stability constants of cuprous and cupric complexes has been developed. The method depends upon the determination of the concentration of complexes by polarographic wave heights, and free cupric anc cuprous ions by redox potentials. The stability constants of the following complexes have been obtained: Cu(NH3)2+4, Cu(NH3)+2, Cu(CH3NH2)2(OH)2, Cu(CH3NH2)+2. The stability constants determined by the new method and the half-wave potential shift method agree and the value for the cupric-ammonia complex is in good agreement with Bjerrum method, indicating the reliability of this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uniform Lu2O3:Eu3+ nanorods and nanowires have been successfully prepared through a simple solution-based hydrothermal process followed by a subsequent calcination process without using any surfactant, catalyst, or template. On the basis of X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and Fourier transform infrared spectroscopy results, it can be assumed that the as-obtained precursors have the structure formula of Lu4O(OH)(9)(NO3), which is a new phase and has not been reported. The morphology of the precursors could be modulated from nanorods to nanowires with the increase of pH value using ammonia solution. The as-formed precursors could transform to cubic Lu2O3:Eu3+ with the same morphology and a slight shrinkage in size after an annealing process, Both the Lu2O3:Eu3+ nanorods and nanowires exhibit the strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under UV light excitation or low-voltage electron beam excitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well-faceted hexagonal ZnO microprisms with regular interior space have been successfully prepared by a template-free hydrothermal synthetic route. The morphologies of the products depend on the experimental conditions such as the solvent, the concentration of ammonia aqueous solution, and the reaction temperature. Through manipulation of the aging time, the as-prepared ZnO can be controlled as a monodispersed hexagonal twinning solid or as hollow microprisms. Moreover, the evolution process of the hollow ZnO nanoarchitecture after reaction for 2, 6, 12, and 24 h has been investigated by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). A possible growth mechanism has also been proposed and discussed. Furthermore, the photoluminescence (PL) measurement exhibits the unique emitting characteristic of hollow ZnO nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crucial roles of the coverage of surface free sites in determining catalytic activity trend are quantitatively addressed with the help of density functional theory and microkinetics. First, by analyzing activity trends of NO oxidation catalyzed by Ru, Rh, Pd, Os, Ir, and Pt surfaces with full kinetic considerations, we identify that the activity trend is in general determined by the competition between the reaction barrier and the coverage of surface free sites. Second, since the dissociation of many important molecules, such as the dissociation of N(2), O(2), and CO, follows the same Bronsted-Evans-Polanyi relationship, the coverage of surface free sites is usually a decisive term that affects the overall activity. Third, an equation is derived for the coverage of surface free sites and it is found that the coverage of surface free sites contains not only all the key thermodynamic parameters but also all the kinetic properties in the catalytic system. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3140202]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon were examined by a combined biochemical and double-labeling immunocytochemical study for the developmental expression of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). It was found that these two astroglial markers are co-expressed at different developmental stages in vitro. During the phase of cellular maturation (i.e. between days 14 and 34), GFAP levels and GS activity increase rapidly and in parallel. At the same time, the number of immunoreactive cells increase while the long and thick processes staining in early cultures gradually disappear. The present results demonstrate that in this particular cell culture system only one type of astrocytes develops which expresses both GFAP and GS and which attains a relatively high degree of maturation.