756 resultados para Franklin Association (Franklin County, Mass.)
Resumo:
Mode of access: Internet.
Resumo:
Vol. 3: History of Greenfield, 1900-1929, by Lucy Cutler Kellogg ... Published by the town of Greenfield, committee: Francis Nims Thompson and Frank Gerrett. Vol. 4: History of Greenfield, 1930-1953, by C. S. Severance.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Franklin County, Massachusetts : based upon the trigonometrical survey of the state, the details from actual surveys under the direction of H.F. Walling, supt. of the state map. It was published by Smith & Ingraham in 1858. Scale [ca. 1:47,520]. This layer is image 1 of 3 total images, representing the northwest portion of the four sheet source map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and school district boundaries, and more. Relief shown by hachures. It includes many cadastral insets of individual county towns and villages. It also includes illustrations, business directories, and tables of statistics and distances.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Franklin County, Massachusetts : based upon the trigonometrical survey of the state, the details from actual surveys under the direction of H.F. Walling, supt. of the state map. It was published by Smith & Ingraham in 1858. Scale [ca. 1:47,520]. This layer is image 3 of 3 total images, representing the northeast portion of the four sheet source map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and school district boundaries, and more. Relief shown by hachures. It includes many cadastral insets of individual county towns and villages. It also includes illustrations, business directories, and tables of statistics and distances.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
Bibliography: p. 17.
Resumo:
"This edition is strictly limited to 200 copies, This copy is number 54."
Resumo:
Mode of access: Internet.
Resumo:
"N-1-09"--p. [4] of cover.
Resumo:
"PA 094-059 (HB2411)"
Resumo:
Mode of access: Internet.
Resumo:
BACKGROUND:Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms.METHODS:We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates [greater than or equal to]80%, HWE p [greater than or equal to] 0.001, and MAF [greater than or equal to]10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers.RESULTS:Heritability estimates for all bone phenotypes were 30-66%. LOD scores [greater than or equal to]3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679-58,934,236 bp) and 22 (35,890,398-48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 x 10-6 and 2.5 x 10-5, respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.
Resumo:
Objetivo:Analisar a associação entre a massa óssea e capacidade funcional de idosos com 80 anos ou mais.Métodos:A amostra foi composta por 93 idosos entre 80 e 91 anos (83,2 ± 2,5 anos), 61 mulheres (83,3 ± 2,7 anos) e 32 homens (83,1 ± 2,2 anos) da cidade de Presidente Prudente. A avaliação da massa óssea foi feita pela absorptiometria de dupla energia de raios X (DXA), na qual foram mensurados os valores de conteúdo mineral ósseo (BMC) e densidade mineral óssea (BMD) do fêmur e da coluna (L1-L4). A capacidade funcional foi avaliada por meio dos testes de velocidade para caminhar, equilíbrio estático e força de membros inferiores contidos no questionário Saúde, Bem-Estar e Envelhecimento (Sabe). As variáveis da massa óssea e capacidade funcional foram categorizadas de acordo com os valores de mediana e a pontuação obtida nos testes, respectivamente. Para tratamento estatístico fez-se o teste qui-quadrado, o software usado foi SPSS (13.0) e o nível de significância estabelecido foi de 5%.Resultados:Os idosos do sexo masculino com maior desempenho nos testes funcionais apresentaram maiores valores de BMC de fêmur comparados com os de menor desempenho, resultado não encontrado quando avaliadas as mulheres.Conclusão:Dessa forma, a massa óssea do fêmur para idosos longevos do sexo masculino está associada à capacidade funcional. A avaliação constante da massa mineral óssea e a prática de atividade física ao longo da vida seriam medidas para prevenção das quedas em idosos.
Resumo:
Thank you for inviting me to be here today. I truly appreciate this opportunity to visit with you. I've been asked to tell you about some of the recent successes of the Institute of Agriculture and Natural Resources, to talk about opportunities for the Institute in Nebraska's future, and to talk, also, about extension's role in that.
Resumo:
Background: We aimed to examine whether time spent on different sedentary behaviours is associated with bone mineral content (BMC) in adolescents, after controlling for relevant confounders such as lean mass and objectively measured physical activity (PA), and if so, whether extra-curricular participation in osteogenic sports could have a role in this association. Methods: Participants were 359 Spanish adolescents (12.5-17.5 yr, 178 boys,) from the HELENA-CSS (2006-07). Relationships of sedentary behaviours with bone variables were analysed by linear regression. The prevalence of low BMC (at least 1SD below the mean) and time spent on sedentary behaviours according to extracurricular sport participation was analysed by Chi-square tests. Results: In boys, the use of internet for non-study was negatively associated with whole body BMC after adjustment for lean mass and moderate to vigorous PA (MVPA). In girls, the time spent studying was negatively associated with femoral neck BMC. Additional adjustment for lean mass slightly reduced the negative association between time spent studying and femoral neck BMC. The additional adjustment for MVPA did not change the results at this site. The percentage of girls having low femoral neck BMC was significantly smaller in those participating in osteogenic sports (>= 3 h/week) than in the rest, independently of the cut-off selected for the time spent studying. Conclusions: The use of internet for non-study (in boys) and the time spent studying (in girls) are negatively associated with whole body and femoral neck BMC, respectively. In addition, at least 3 h/week of extra-curricular osteogenic sports may help to counteract the negative association of time spent studying on bone health in girls.