992 resultados para Fragment-length-polymorphisms
Resumo:
Background: Restriction fragment length polymorphism (RFLP) is a common molecular assay used for genotyping, and it requires validated quality control procedures to prevent mistyping caused by impaired endonuclease activity. We have evaluated the usefulness of a plasmid-based internal control in RFLP assays. Results: Blood samples were collected from 102 individuals with acute myocardial infarction (AMI) and 108 non-AMI individuals (controls) for DNA extraction and laboratory analyses. The 1196C> T polymorphism in the toll-like receptor 4 (TLR4) gene was amplified by mismatched-polymerase chain reaction (PCR). Amplicons and pBluescript II SK-plasmid were simultaneously digested with endonuclease HincII. Fragments were separated on 2% agarose gels. Plasmid was completely digested using up to 55.2 nmL/L DNA solutions and 1 mu L PCR product. Nevertheless, plasmid DNA with 41.4 nM or higher concentrations was incompletely digested in the presence of 7 mL PCR product. In standardized conditions, TLR4 1196C> T variant was accurately genotyped. TLR4 1196T allele frequency was similar between AMI (3.1%) and controls (2.0%, p = 0.948). TLR4 SNP was not associated with AMI in this sample population. In conclusion, the plasmid-based control is a useful approach to prevent mistyping in RFLP assays, and it is validate for genetic association studies such as TLR4 1196C> T.
Resumo:
Source/Description: The probe used is a 98 bp fragment amplified by PCR from a cDNA clone of the CFTR gene or from genomic DNA corresponding to exon 10, using two primers from this exon (1)...
Resumo:
Source/Description: pKM.19 is a 1.0 kb EcoRI genomic fragment in pUC13 (ref. 1,2). pPl was isolated independently but contains the same fragment as pKM.19 (ref. 3)...
Resumo:
Brazil contributes substantially to the global peanut production, and the state of Sao Paulo is the largest producer in the country. Peanut crops can be contaminated by Aspergillus flavus strains producing aflatoxins, which are highly toxic and carcinogenic. Thus, the production of high-quality peanuts is crucial both for the commercial peanut industry and as a matter of public health. In this study, we used amplified fragment length polymorphism analysis (AFLP) to investigate the genetic variability among A. flavus strains isolated from fresh peanuts harvested in four different regions in the state of Sao Paulo, and to determine whether the molecular genetic profiles correlated with aflatoxin production or sclerotia formation. AFLP analysis generated 78 fragments ranging from 27 to 365 base pairs in length. Thirteen percent were not polymorphic. Genotyping identified twelve groups of A. flavus. On the basis of the polymorphisms identified, similarity between the isolates ranged from 37% to 100%. Of all isolates collected, 91.7% produced aflatoxins and 83.9% produced small sclerotia. Statistical analysis failed to suggest any relationship between the presence of sclerotia and mean levels of aflatoxins B-1 and B-2. Furthermore, a dendrogram based on AFLP data revealed substantial genetic variability among the A. flavus strains, but showed no correlation between dendrogram groups separated by molecular genetic features and production of aflatoxins B-1 or B-2 or the formation of sclerotia.
Resumo:
Phytophthora cinnamomi isolates from South Africa and Australia were compared to assess genetic differentiation between the two populations. These two populations were analysed for levels of phenotypic diversity using random amplified polymorphic DNAs (RAPDs) and gene and genotypic diversity using restriction fragment length polymorphisms (RFLPs). Sixteen RAPD markers from four decanucleotide Operon primers and 34 RFLP alleles from 15 putative loci were used. A few isolates from Papua New Guinea known to posses alleles different from Australian isolates were also included for comparative purposes. South African and Australian P. cinnamomi populations were almost identical with an extremely low level of genetic distance between them (D-m = 0.003). Common features for the two populations include shared alleles, low levels of phenotypic/genotypic diversity, high clonality, and low observed and expected levels of heterozygosity. Furthermore, relatively high levels of genetic differentiation between mating type populations (D-m South Africa = 0.020 and D-m Australia = 0.025 respectively), negative fixation indices, and significant deviations from Hardy-Weinberg equilibrium, all provided evidence for the lack of frequent sexual reproduction in both populations. The data strongly suggest that both the South African and Australian P. cinnamomi populations are introduced.
Resumo:
One hundred and fifty-one Erysipelothrix spp. isolates from diseased and carrier swine from Brazil were identified by PCR, submitted to serotyping and analyzed by amplified fragment length polymorphism with a single enzyme (AFLP). Reference strains from Australia and the United Kingdom were also examined. The 151 strains were classified into 18 different serotypes (1a, 1b, 2a, 2b, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 19, 21, 24 and 25), being serotype 2b the most frequent (39.7%). By associating serotyping and PCR results, it was possible to identify 146 strains as E. rhusiopathiae and five strains as E. tonsillarum. Despite the fact that for this genus AFLP did not cluster all isolates according to serotype, origin, disease or isolation data, the execution of the technique was easy and fast, demonstrating high discriminatory power. The results produced by the AFLP analysis of Erysipelothrix spp. could also support its use as a discriminatory tool for E. rhusiopathiae and E. tonsillarum species. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the Sao Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain.
Resumo:
Members of the Culex sitiens subgroup are important vectors of arboviruses, including Japanese encephalitis virus, Murray Valley encephalitis virus and Ross River virus. Of the eight described species, Cx. annulirostris Skuse, Cx. sitiens Wiedemann, and Cx. palpalis Taylor appear to be the most abundant and widespread throughout northern Australia and Papua New Guinea (PNG). Recent investigations using allozymes have shown this subgroup to contain cryptic species that possess overlapping adult morphology. We report the development of a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) procedure that reliably separates these three species. This procedure utilizes the sequence variation in the ribosomal DNA ITS1 and demonstrates species-specific PCR-RFLP profiles from both colony and field collected material. Assessment of the consistency of this procedure was undertaken on mosquitoes sampled from a wide geographic area including Australia, PNG, and the Solomon Islands. Overlapping adult morphology was observed for Cx. annulirostris and Cx. palpalis in both northern Queensland and PNG and for all three species at one site in northwest Queensland.
Resumo:
The utility of 16s rDNA restriction fragment length polymorphism (RFLP) analysis for the partial genomovar differentiation of Burkholderia cepacia complex bacterium is well documented. We compared the 16s rDNA RFLP signatures for a number of non-fermenting gram negative bacilli (NF GNB) LMG control strains and clinical isolates pertaining to the genera Burkholderia, Pseudomonas, Achromobacter (Alcaligenes), Ralstonia, Stenotrophomonas and Pandoraea. A collection of 24 control strain (LMG) and 25 clinical isolates were included in the study. Using conventional PCR, a 1.2 kbp 16s rDNA fragment was generated for each organism. Following restriction digestion and electrophoresis, each clinical isolate RFLP signature was compared to those of the control strain panel. Nineteen different RFLP signatures were detected from the 28 control strains included in the study. TwentyoneyTwenty- five of the clinical isolates could be classified by RFLP analysis into a single genus and species when compared to the patterns produced by the control strain panel. Four clinical B. pseudomallei isolates produced RFLP signatures which were indistinguishable from B. cepacia genomovars I, III and VIII. The identity of these four isolates were confirmed using B. pseudomallei specific PCR. 16s rDNA RFLP analysis can be a useful identification strategy when applied to NF GNB, particularly for those which exhibit colistin sulfate resistance. The use of this molecular based methodology has proved very useful in the setting of a CF referral laboratory particularly when utilised in conjunction with B. cepacia complex and genomovar specific PCR techniques. Species specific PCR or sequence analysis should be considered for selected isolates; especially where discrepancies between epidemiology, phenotypic and genotypic characteristics occur.
Resumo:
In the present study we report the results of an analysis, based on ribotyping of Corynebacterium diphtheriae intermedius strains isolated from a 9 years old child with clinical diphtheria and his 5 contacts. Quantitative analysis of RFLPs of rRNA was used to determine relatedness of these 7 C.diphtheriae strains providing support data in the diphtheria epidemiology. We have also tested those strains for toxigenicity in vitro by using the Elek's gel diffusion method and in vivo by using cell culture method on cultured monkey kidney cell (VERO cells). The hybridization results revealed that the 5 C.diphtheriae strains isolated from contacts and one isolated from the clinical case (nose case strain) had identical RFLP patterns with all 4 restriction endonucleases used, ribotype B. The genetic distance from this ribotype and ribotype A (throat case strain), that we initially assumed to be responsible for the illness of the patient, was of 0.450 showing poor genetic correlation among these two ribotypes. We found no significant differences concerned to the toxin production by using the cell culture method. In conclusion, the use of RFLPs of rRNA gene was successful in detecting minor differences in closely related toxigenic C.diphtheriae intermedius strains and providing information about genetic relationships among them.
Resumo:
We sequenced the internal transcribed spacer 2 of the ribosomal DNA (ITS2-DNAr) from the three Schistosoma mansoni intermediate hosts in Brazil: Biomphalaria glabrata, Biomphalaria tenagophila and Biomphalaria straminea. Analysis of a restriction map from those sequences allowed us to select putative restriction enzymes able to identify the snail species under study. Four restriction enzymes were used and HpaII provided simple species-specific profiles easily visualized in polyacrylamide gels. The use of ITS2 is advantageous as it provides a small fragment of 460 bp which may be easily amplified by PCR. In the current work, we showed that the amplification of ITS2-DNAr together with HpaII enzyme restriction is an auxiliary molecular tool for the morphological identification of such snails as well as for taxonomic and phylogenetic studies of neotropical planorbids.
Resumo:
Abstract: INTRODUCTION Characterization of Mycobacterium tuberculosis (MTB) isolates by DNA fingerprinting has contributed to tuberculosis (TB) control. The aim of this study was to determine the genetic diversity of MTB isolates from Tehran province in Iran. METHODS MTB isolates from 60 Iranian and 10 Afghan TB patients were fingerprinted by standard IS6110-restriction fragment length polymorphism (RFLP) analysis and spoligotyping. RESULTS The copy number of IS6110 ranged from 10-24 per isolate. The isolates were classified into 22 clusters showing ≥ 80% similarity by RFLP analysis. Fourteen multidrug-resistant (MDR) isolates were grouped into 4 IS6110-RFLP clusters, with 10 isolates [71% (95% CI: 45-89%)] in 1 cluster, suggesting a possible epidemiological linkage. Eighteen Iranian isolates showed ≥ 80% similarity with Afghan isolates. There were no strains with identical fingerprints. Spoligotyping of 70 isolates produced 23 distinct patterns. Sixty (85.7%) isolates were grouped into 13 clusters, while the remaining 10 isolates (14.2%) were not clustered. Ural (formerly Haarlem4) (n = 22, 31.4%) was the most common family followed by Central Asian strain (CAS) (n = 18, 25.7%) and T (n = 9, 12.8%) families. Only 1strain was characterized as having the Beijing genotype. Among 60 Iranian and 10 Afghan MTB isolates, 25% (95% CI: 16-37) and 70% (95% CI: 39-89) were categorized as Ural lineage, respectively. CONCLUSIONS A higher prevalence of Ural family MTB isolates among Afghan patients than among Iranian patients suggests the possible transmission of this lineage following the immigration of Afghans to Iran.
Resumo:
The freshwater snails Biomphalaria straminea, B. intermedia, B. kuhniana and B. peregrina, are morphologically similar; based on this similarity the first three species were therefore grouped in the complex B. straminea. The morphological identification of these species is based on characters such as vaginal wrinkling, relation between prepuce: penial sheath:deferens vas and number of muscle layers in the penis wall. In this study the polymerase chain reaction restriction fragment length polymorphism technique was used for molecular identification of these molluscs. This technique is based on the amplification of the internal transcribed spacer regions ITS1 e ITS2 of the ribosomal RNA gene and subsequent digestion of these fragments by restriction enzymes. Six enzymes were tested: Dde I, Mnl I, Hae III, Rsa I, Hpa II e Alu I. The restriction patterns obtained with DdeI presented the best profile for separation of the four species of Biomphalaria. The profiles obtained with all the enzymes were used to estimate the genetic distances among the species through analysis of common banding patterns.
Resumo:
The restriction fragment length polymorphism of the 195 bp repeated DNA sequence of Trypanosoma cruzi was analyzed among 23 T. cruzi stocks giving a reliable picture of the whole phylogenetic variability of the species. The profiles observed with the enzymes Hinf I and Hae III were linked together and supported the existence of two groups. Group 1 shows a 195 bp repeated unit (Hinf I) and high molecular weight DNA (Hae III), while group 2 presents a ladder profile for each enzyme, which is a characteristic of tandemly repeated DNA. The two groups, respectively, clustered stocks pertaining to the two principal lineages evidenced by isoenzyme and RAPD markers. The congruence among these three independent genomic markers corroborates the existence of two real phylogenetic lineages in T. cruzi. The specific monomorphic profiles for each major phylogenetic lineage suggest the existence of ancient sexuality and cryptic biological speciation.
Resumo:
Snails of the genus Biomphalaria from Venezuela were subjected to morphological assessment as well as polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Morphological identification was carried out by comparison of characters of the shell and the male and female reproductive apparatus. The PCR-RFLP involved amplification of the internal spacer region ITS1 and ITS2 of the RNA ribosomal gene and subsequent digestion of this fragment by the restriction enzymes DdeI, MnlI, HaeIII and MspI. The planorbids were compared with snails of the same species and others reported from Venezuela and present in Brazil, Cuba and Mexico. All the enzymes showed a specific profile for each species, that of DdeI being the clearest. The snails were identified as B. glabrata, B. prona and B. kuhniana.