917 resultados para Fractional Differential Equation (FDE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of fractional calculus when modeling phenomena allows new queries concerning the deepest parts of the physical laws involved in. Here we will be dealing with an apparent paradox in which the time of transference from zero in a system with fractional derivatives can be strictly shortened relatively to the minimal time transference done in an equivalent system in the frame of the entire derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 76M35, 82B31

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order $0<\alpha<1$ ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent with $O(\tau+h^2)$, where $\tau$ and $h$ are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximum principle for the space and time–space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time–space Riesz–Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor–corrector method combining the L1 and L2 discrete schemes, we present a numerical method for the specified equation. Two examples are given to illustrate the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with fractional differential equations, with dependence on a Caputo fractional derivative of real order. The goal is to show, based on concrete examples and experimental data from several experiments, that fractional differential equations may model more efficiently certain problems than ordinary differential equations. A numerical optimization approach based on least squares approximation is used to determine the order of the fractional operator that better describes real data, as well as other related parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative and the second order space derivative by the symmetric fractional derivative. Firstly, a method of separating variables is used to express the analytical solution of the tss-fde in terms of the Mittag–Leffler function. Secondly, we propose two numerical methods to approximate the Caputo time fractional derivative, namely, the finite difference method and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results are presented to demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.