938 resultados para Fractal dimension of fractionation
Resumo:
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.
Resumo:
Aims: This study compared fractal dimension (FD) values on mandibular trabecular bone in digital and digitized images at different spatial and contrast resolutions. Materials and Methods: 12 radiographs of dried human mandibles were obtained using custom-fabricated hybrid image receptors composed of a periapical radiographic film and a photostimulable phosphor plate (PSP). The film/ PSP sets were disassembled, and the PSPs produced images with 600 dots per inch (dpi) and 16 bits. These images were exported as tagged image file format (TIFF), 16 and 8 bits, and 600, 300 and 150 dpi. The films were processed and digitized 3 times on a flatbed scanner, producing TIFF images with 600, 300 and 150 dpi, and 8 bits. On each image, a circular region of interest was selected on the trabecular alveolar bone, away from root apices and FD was calculated by tile counting method. Two-way ANOVA and Tukey’s test were conducted to compare the mean values of FD, according to image type and spatial resolution (α = 5%). Results: Spatial resolution was directly and inversely proportional to FD mean values and standard deviation, respectively. Spatial resolution of 150 dpi yielded significant lower mean values of FD than the resolutions of 600 and 300 dpi ( P < 0.05). A nonsignificant variability was observed for the image types ( P > 0.05). The interaction between type of image and level of spatial resolution was not signi fi cant (P > 0.05). Conclusion: Under the tested, conditions, FD values of the mandibular trabecular bone assessed either by digital or digitized images did not change. Furthermore, these values were in fluenced by lower spatial resolution but not by contrast resolution.
Resumo:
This paper is dedicated to estimate the fractal dimension of exponential global attractors of some generalized gradient-like semigroups in a general Banach space in terms of the maximum of the dimension of the local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup and the rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, A*) is an attractor-repeller pair for the attractor A of a semigroup {T(t) : t >= 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of A*, the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. As we said previously, we generalize this result for some evolution processes using the same basic ideas. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.
Resumo:
The fractal dimension has been employed as a useful parameter in the diagnosis of retinal disease. Avakian et al. (Curr Eye Res 2002; 24: 274-280), comparing the vascular pattern of normal patients with mild to moderate non-proliferative diabetic retinopathy (NPDR), found a significant difference between them only in the macular region. This significant difference in the box-counting fractal dimension of the macular region between normal and mild NPDR patients has been proposed as a method of precocious diagnosis of NPDR. The aim of the present study was to determine if fractal dimensions can really be used as a parameter for the early diagnosis of NPDR. Box-counting and information fractal dimensions were used to parameterize the vascular pattern of the human retina. The two methods were applied to the whole retina and to nine anatomical regions of the retina in 5 individuals with mild NPDR and in 28 diabetic but opthalmically normal individuals (controls), with age between 31 and 86 years. All images of retina were obtained from the Digital Retinal Images for Vessel Extraction (DRIVE) database. The results showed that the fractal dimension parameter was not sensitive enough to be of use for an early diagnosis of NPDR.
Resumo:
Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.
Resumo:
Previously it has been shown that the branching pattern of pyramidal cells varies markedly between different cortical areas in simian primates. These differences are thought to influence the functional complexity of the cells. In particular, there is a progressive increase in the fractal dimension of pyramidal cells with anterior progression through cortical areas in the occipitotemporal (OT) visual stream, including the primary visual area (V1), the second visual area (V2), the dorsolateral area (DL, corresponding to the fourth visual area) and inferotemporal cortex (IT). However, there are as yet no data on the fractal dimension of these neurons in prosimian primates. Here we focused on the nocturnal prosimian galago (Otolemur garnetti). The fractal dimension (D), and aspect ratio (a measure of branching symmetry), was determined for I I I layer III pyramidal cells in V1, V2, DL and IT. We found, as in simian primates, that the fractal dimension of neurons increased with anterior progression from V1 through V2, DL, and IT. Two important conclusions can be drawn from these results: (1) the trend for increasing branching complexity with anterior progression through OT areas was likely to be present in a common primate ancestor, and (2) specialization in neuron structure more likely facilitates object recognition than spectral processing.
Resumo:
Edible oil is an important contaminant in water and wastewater. Oil droplets smaller than 40 μm may remain in effluent as an emulsion and combine with other contaminants in water. Coagulation/flocculation processes are used to remove oil droplets from water and wastewater. By adding a polymer at proper dose, small oil droplets can be flocculated and separated from water. The purpose of this study was to characterize and analyze the morphology of flocs and floc formation in edible oil-water emulsions by using microscopic image analysis techniques. The fractal dimension, concentration of polymer, effect of pH and temperature are investigated and analyzed to develop a fractal model of the flocs. Three types of edible oil (corn, olive, and sunflower oil) at concentrations of 600 ppm (by volume) were used to determine the optimum polymer dosage and effect of pH and temperature. To find the optimum polymer dose, polymer was added to the oil-water emulsions at concentration of 0.5, 1.0, 1.5, 2.0, 3.0 and 3.5 ppm (by volume). The clearest supernatants obtained from flocculation of corn, olive, and sunflower oil were achieved at polymer dosage of 3.0 ppm producing turbidities of 4.52, 12.90, and 13.10 NTU, respectively. This concentration of polymer was subsequently used to study the effect of pH and temperature on flocculation. The effect of pH was studied at pH 5, 7, 9, and 11 at 30°C. Microscopic image analysis was used to investigate the morphology of flocs in terms of fractal dimension, radius of oil droplets trapped in floc, floc size, and histograms of oil droplet distribution. Fractal dimension indicates the density of oil droplets captured in flocs. By comparison of fractal dimensions, pH was found to be one of the most important factors controlling droplet flocculation. Neutral pH or pH 7 showed the highest degree of flocculation, while acidic (pH 5) and basic pH (pH 9 and pH 11) showed low efficiency of flocculation. The fractal dimensions achieved from flocculation of corn, olive, and sunflower oil at pH 7 and temperature 30°C were 1.2763, 1.3592, and 1.4413, respectively. The effect of temperature was explored at temperatures 20°, 30°, and 40°C and pH 7. The results of flocculation of oil at pH 7 and different temperatures revealed that temperature significantly affected flocculation. The fractal dimension of flocs formed in corn, olive and sunflower oil emulsion at pH 7 and temperature 20°, 30°, and 40°C were 1.82, 1.28, 1.29, 1.62, 1.36, 1.42, 1.36, 1.44, and 1.28, respectively. After comparison of fractal dimension, radius of oil droplets captured, and floc length in each oil type, the optimal flocculation temperature was determined to be 30°C. ^
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
Comentaris referits a l'article següent: K. J. Vinoy, J. K. Abraham, and V. K. Varadan, “On the relationshipbetween fractal dimension and the performance of multi-resonant dipoleantennas using Koch curves,” IEEE Transactions on Antennas and Propagation, 2003, vol. 51, p. 2296–2303.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a method for the quantification of cellular rejection in endomyocardial biopsies of patients submitted to heart transplant. The model is based on automatic multilevel thresholding, which employs histogram quantification techniques, histogram slope percentage analysis and the calculation of maximum entropy. The structures were quantified with the aid of the multi-scale fractal dimension and lacunarity for the identification of behavior patterns in myocardial cellular rejection in order to determine the most adequate treatment for each case.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.