986 resultados para Four-color problem
Resumo:
Vita.
Resumo:
Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Resumo:
In high hyperdiploid acute lymphoblastic leukemia (ALL), the concurrence of specific trisomies confers a more favorable outcome than hyperdiploidy alone. Interphase fluorescence in situ hybridization (FISH) complements conventional cytogenetics (CC) through its sensitivity and ability to detect chromosome aberrations in nondividing cells. To overcome the limits of manual I-FISH, we developed an automated four-color I-FISH approach and assessed its ability to detect concurrent aneuploidies in ALL. I-FISH was performed using centromeric probes for chromosomes 4, 6, 10, and 17. Parameters established for nucleus selection and signal detection were evaluated. Cutoff values were determined. Combinations of aneuploidies were considered relevant when each aneuploidy was individually significant. Results obtained in 10 patient samples were compared with those obtained with CC. Various combinations of aneuploidies were identified. All clones detected by CC were observed also by I-FISH, and I-FISH revealed numerous additional abnormal clones in all patients, ranging from < or =1% to 31.6% of cells analyzed. We conclude that four-color automated I-FISH permits the identification of concurrent aneuploidies of potential prognostic significance. Large numbers of cells can be analyzed rapidly. The large number of nuclei scored revealed a high level of chromosome variability both at diagnosis and relapse, the prognostic significance of which is of considerable clinical interest and merits further evaluation.
Resumo:
The use of colored microspheres to adequately evaluate blood flow changes under different circumstances in the same rat has been validated with a maximum of three different colors due to methodological limitations. The aim of the present study was to validate the use of four different colors measuring four repeated blood flow changes in the same rat to assess the role of vasopressor systems in controlling arterial pressure (AP). Red (150,000), white (200,000), yellow (150,000), and blue (200,000) colored microspheres were infused into the left ventricle of 6 male Wistar rats 1) at rest and 2) after vasopressin (aAVP, 10 µg/kg, iv), 3) renin-angiotensin (losartan, 10 mg/kg, iv), and 4) sympathetic system blockade (hexamethonium, 20 mg/kg, iv) to determine blood flow changes. AP was recorded and processed with a data acquisition system (1-kHz sampling frequency). Blood flow changes were quantified by spectrophotometry absorption peaks for colored microsphere components in the tissues evaluated. Administration of aAVP and losartan slightly reduced the AP (-5.7 ± 0.5 and -7.8 ± 1.2 mmHg, respectively), while hexamethonium induced a 52 ± 3 mmHg fall in AP. The aAVP injection increased blood flow in lungs (78%), liver (117%) and skeletal muscle (>150%), while losartan administration enhanced blood flow in heart (126%), lungs (100%), kidneys (80%), and gastrocnemius (75%) and soleus (94%) muscles. Hexamethonium administration reduced only kidney blood flow (50%). In conclusion, four types of colored microspheres can be used to perform four repeated blood flow measurements in the same rat detecting small alterations such as changes in tissues with low blood flow.
Resumo:
SummarySimultaneous detection of aneuploidies for chromosomes 4, 6,10 and 17 by automated four color l-FISH in high hyperdiploid acute lymphoblastic leukemia: diagnostic assessment, clonal heterogeneity and chromosomal instability in adultsAnna Talamo BlandinService de Génétique Médicale, Unité de Cytogénétique du Cancer, CHUVAcute lymphoblastic leukemia (ALL) is a malignant hemopathy characterized by the accumulation of the immature lymphoid cells in the bone marrow and, most often, in the peripheral blood. ALL is a heterogeneous disease with distinct biological and prognostic entities. At diagnosis, cytogenetic and molecular findings constitute important and independent prognostic factors. High hyperdiploidy with 51-67 chromosomes (HeH), one of the largest cytogenetic subsets of ALL, in childhood particularly, is generally associated with a relatively favorable outcome. Chromosome gain is nonrandom, extracopies of some chromosome occurring more frequently than those of others. Concurrent presence of trisomy for chromosomes 4, 10 and 17 confers an especially good prognosis. The first aim of our work was to develop an automated four color interphase fluorescence in situ hybridization (l-FISH) methodology and to assess its ability to detect concurrent aneuploidies 4, 6, 10 and 17 in 10 ALL patients. Various combinations of aneuploidies were identified. All clones detected by conventional cytogenetics were also observed by l-FISH. However, in all patients, l-FISH revealed numerous additional abnormal clones, leading to a high level of clonal heterogeneity. Our second aim has been to investigate the nature and origin of this clonal heterogeneity and to test for the presence of chromosome instability (CIN) in HeH ALL at initial presentation. Ten HeH ALL and 10 non-HeH ALL patients were analysed by four colour l-FISH and numerical CIN values were determined for all four chromosomes together and for each chromosome and patient group, an original approach in ALL. CIN values in HeH ALL proved to be much higher than#iose in non-HeH ALL, suggesting that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by l-FISH. Our third aim has been to study the evolution of these cytogenetic features during the course of the disease in 10 HeH ALL patients. Clonal heterogeneity was also observed again during disease progression, particularly at relapse. Clones detected at initial presentation generally reappeared in relapse, in most cases with newly generated ones. A significant correlation between the number of abnormal clones and CIN suggested that the higher the instability, the larger the number of abnormal clones. Whereas clonal heterogeneity and its evolution most probably result from underlying chromosome instability, operating processes remain conjectural.RésuméLa leucémie lymphoblastique aiguë (LLA) est une hémopathie maligne qui résulte de l'accumulationde cellules lymphoïdes immatures dans la moelle osseuse, et, le plus souvent, dans le sangpériphérique également. La LLA est une affection hétérogène au sein de laquelle se distinguentplusieurs entités biologiques et pronostiques. Les données cytogénétiques et moléculaires font partieintégrante du diagnostic et jouent un rôle essentiel dans l'évaluation du pronostic. L'hyperdiploïdieélevée à 51-67 chromosomes (HeH), relativement fréquente, en particulier chez l'enfant, s'associe àun pronostic favorable. Le gain de chromosomes ne relève pas du hasard, certains chromosomesétant plus fréquemment impliqués que d'autres. La présence simultanée des trisomies 4, 6, et 17s'associe à un pronostic particulièrement bon. Le premier but du travail a été de développer uneméthode d'analyse automatique par hybridation in situ fluorescente interphasique (I-FISH) à 4couleurs et de tester sa capacité à identifier la présence simultanée d'aneuploïdies 4, 6, 10 et 17 dans10 cas de LLA. Différentes combinaisons d'aneuploïdies ont été identifiées. Tous les clones détectéspar cytogénétique conventionnelle l'ont été par I-FISH. Or, chez tous les patients, l'I-FISH a révélé denombreux clones anormaux additionnels générant un degré élevé d'hétérogénéité clonale. Notredeuxième but a été d'investiguer la nature et l'origine de cette hétérogénéité et de tester la présenced'instabilité chromosomique (CIN) chez les patients avec une LLA HeH en presentation initiale. DixLLA HeH et 10 LLA non-HeH ont été analysées par I-FISH et les valeurs de CIN numérique ont étédéterminées pour les 4 chromosomes ensemble et pour chaque chromosome et groupe de patients,approche originale dans la LLA. Ces valeurs étant beaucoup plus élevées dans la LLA HeH que dansla LLA non-HeH, elles favorisent l'hypothèse selon laquelle la CIN serait à l'origine de l'hétérogénéitéclonale révélée par I-FISH. Le troisième but de notre travail a été d'étudier l'évolution de cescaractéristiques cytogénétiques au cours de la maladie dans 10 cas de LLA HeH. L'hétérogénéitéclonale a été retrouvée lors de la progression de la maladie, en particulier en rechute, où les clonesanormaux détectés en présentation initiale réapparaissent, généralement accompagnés de clonesnouveaux. La corrélation existant entre nombre de clones anormaux et valeurs de CIN suggère queplus l'instabilité est élevée, plus le nombre de clones anormaux est grand. Bien que l'hétérogénéitéclonale et son évolution résultent très probablement de l'instabilité chromosomique, les processus àl'oeuvre ne sont pas entièrement élucidés.
Resumo:
Background and Aims. HTLV-I-transformed T cells secrete biologically active forms of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF). In addition, HTLV-I-transformed cells have a high capacity of adhesion to endothelial cells. Methods. We measured the circulating endothelial progenitor cells (EPCs) and mature endothelial cells (MECs) by flow cytometry in 27 HTLV-I carriers in comparison to 30 healthy, age- and gender-matched subjects. All subjects had HTLV-I positivity confirmed by Western blot and/or polymerase chain reaction (PCR). The numbers of different subpopulations of EPCs and MECSs were evaluated by four-color flow cytometry using a panel of monoclonal antibodies. All reactions were done in duplicate to confirm reproducibility of the results. Results. The median age of all 27 HTLV-I carriers enrolled in this study was 45 years (range: 27-65 years); 11(41%) were male and 16 (59%) were female. The median age of the 30 healthy subjects in the control group was 45.5 years (range: 20-63 years); 11 (36.6%) were male and 19 (63.4%) were female. The number of EPCs was significantly higher in HTLV-I carriers (median 0.8288 cells/mu L, range: 0.0920-3.3176 cells/mu L) as compared to control group (median 0.4905 cells/mu L, range: 0.0000-1.5660 cells/mu L) (p = 0.035). In contrast, the median of the MECs in the HTLV-I carriers was 0.6380 cells/mu L (range: 0.0473-5.7618 cells/mu L) and 0.4950 cells/mu L (range: 0.0000-4.0896 cells/mu L) in the control group, with no statistical difference (p = 0.697). Conclusions. We demonstrated that EPCs, but not MECs, are increased in the peripheral blood of HTLV-I carriers. (C) 2011 IMSS. Published by Elsevier Inc.
Resumo:
Although aneuploidy has many possible causes, it often results from underlying chromosomal instability (CIN) leading to an unstable karyotype with cell-to-cell variation and multiple subclones. To test for the presence of CIN in high hyperdiploid acute lymphoblastic leukemia (HeH ALL) at diagnosis, we investigated 20 patients (10 HeH ALL and 10 non-HeH ALL), using automated four-color interphase fluorescence in situ hybridization (I-FISH) with centromeric probes for chromosomes 4, 6, 10, and 17. In HeH ALL, the proportion of abnormal cells ranged from 36.3% to 92.4%, and a variety of aneuploid populations were identified. Compared with conventional cytogenetics, I-FISH revealed numerous additional clones, some of them very small. To investigate the nature and origin of this clonal heterogeneity, we determined average numerical CIN values for all four chromosomes together and for each chromosome and patient group. The CIN values in HeH ALL were relatively high (range, 22.2-44.7%), compared with those in non-HeH ALL (3.2-6.4%), thus accounting for the presence of numerical CIN in HeH ALL at diagnosis. We conclude that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by I-FISH in HeH ALL at presentation, which would corroborate the potential role of CIN in tumor pathogenesis.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
Identification and enumeration of human hematopoietic stem cells remain problematic, since in vitro and in vivo stem cell assays have different outcomes. We determined if the altered expression of adhesion molecules during stem cell expansion could be a reason for the discrepancy. CD34+CD38- and CD34+CD38+ cells from umbilical cord blood were analyzed before and after culture with thrombopoietin (TPO), FLT-3 ligand (FL) and kit ligand (KL; or stem cell factor) in different combinations: TPO + FL + KL, TPO + FL and TPO, at concentrations of 50 ng/mL each. Cells were immunophenotyped by four-color fluorescence using antibodies against CD11c, CD31, CD49e, CD61, CD62L, CD117, and HLA-DR. Low-density cord blood contained 1.4 ± 0.9% CD34+ cells, 2.6 ± 2.1% of which were CD38-negative. CD34+ cells were isolated using immuno-magnetic beads and cultured for up to 7 days. The TPO + FL + KL combination presented the best condition for maintenance of stem cells. The total cell number increased 4.3 ± 1.8-fold, but the number of viable CD34+ cells decreased by 46 ± 25%. On the other hand, the fraction of CD34+CD38- cells became 52.0 ± 29% of all CD34+ cells. The absolute number of CD34+CD38- cells was expanded on average 15 ± 12-fold when CD34+ cells were cultured with TPO + FL + KL for 7 days. The expression of CD62L, HLA-DR and CD117 was modulated after culture, particularly with TPO + FL + KL, explaining differences between the adhesion and engraftment of primary and cultured candidate stem cells. We conclude that culture of CD34+ cells with TPO + FL + KL results in a significant increase in the number of candidate stem cells with the CD34+CD38- phenotype.
Resumo:
Afin de mieux cerner les enjeux de la transition entre le secondaire et le postsecondaire, nous proposons un examen du passage de la notion de fonction à celle de dérivée. À la lumière de plusieurs travaux mettant en évidence des difficultés inhérentes à ce passage, et nous basant sur les recherches de Carlson et ses collègues (Carlson, 2002; Carlson, Jacobs, Coe, Larsen et Hsu, 2002; Carlson, Larsen et Jacobs, 2001; Oehrtman, Carlson et Thompson, 2008) sur le raisonnement covariationnel, nous présentons une analyse de la dynamique du développement de ce raisonnement chez des petits groupes d’élèves de la fin du secondaire et du début du collégial dans quatre situations-problèmes différentes. L’analyse des raisonnements de ces groupes d’élèves nous a permis, d’une part, de raffiner la grille proposée par Carlson en mettant en évidence, non seulement des unités de processus de modélisation (ou unités de raisonnement) mises en action par ces élèves lors des activités proposées, mais aussi leurs rôles au sein de la dynamique du raisonnement. D’autre part, cette analyse révèle l’influence de certaines caractéristiques des situations sur les interactions non linéaires entre ces unités.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO) and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.
Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)