952 resultados para Four-Dimensional Computed Tomography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: To investigate the potential dosimetric and clinical benefits predicted by using four-dimensional computed tomography (4DCT) compared with 3DCT in the planning of radical radiotherapy for non-small cell lung cancer.

MATERIALS AND METHODS:
Twenty patients were planned using free breathing 4DCT then retrospectively delineated on three-dimensional helical scan sets (3DCT). Beam arrangement and total dose (55 Gy in 20 fractions) were matched for 3D and 4D plans. Plans were compared for differences in planning target volume (PTV) geometrics and normal tissue complication probability (NTCP) for organs at risk using dose volume histograms. Tumour control probability and NTCP were modelled using the Lyman-Kutcher-Burman (LKB) model. This was compared with a predictive clinical algorithm (Maastro), which is based on patient characteristics, including: age, performance status, smoking history, lung function, tumour staging and concomitant chemotherapy, to predict survival and toxicity outcomes. Potential therapeutic gains were investigated by applying isotoxic dose escalation to both plans using constraints for mean lung dose (18 Gy), oesophageal maximum (70 Gy) and spinal cord maximum (48 Gy).

RESULTS:
4DCT based plans had lower PTV volumes, a lower dose to organs at risk and lower predicted NTCP rates on LKB modelling (P < 0.006). The clinical algorithm showed no difference for predicted 2-year survival and dyspnoea rates between the groups, but did predict for lower oesophageal toxicity with 4DCT plans (P = 0.001). There was no correlation between LKB modelling and the clinical algorithm for lung toxicity or survival. Dose escalation was possible in 15/20 cases, with a mean increase in dose by a factor of 1.19 (10.45 Gy) using 4DCT compared with 3DCT plans.

CONCLUSIONS:
4DCT can theoretically improve therapeutic ratio and dose escalation based on dosimetric parameters and mathematical modelling. However, when individual characteristics are incorporated, this gain may be less evident in terms of survival and dyspnoea rates. 4DCT allows potential for isotoxic dose escalation, which may lead to improved local control and better overall survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: High local control rates are achieved in stage I lung cancer using stereotactic ablative radiotherapy. Target delineation is commonly based on four-dimensional computed tomography (CT) scans. Target volumes defined by positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional') F-fluorodeoxyglucose (F-FDG) PET/CT. Materials and methods: For 16 stage I non-small cell lung cancer tumours, six approaches for deriving PET target volumes were evaluated: manual contouring, standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV (35%SUV), 41% of SUV (41%SUV) and two different source to background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum intensity projection (MIP ITV). Volumetric and positional correlation was assessed using the Dice similarity coefficient (DSC). Results: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV = 0.63, 41%SUV = 0.57. SBR-1 = 0.52, SBR-2 = 0.49. PET-based target volumes were smaller than corresponding MIP ITVs. Conclusions: Conventional three-dimensional F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use (MIP ITV). Caution is required in using three-dimensional PET for motion encompassing target volume delineation. © 2012 The Royal College of Radiologists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: High local control rates are achieved in stage I lung cancer using
stereotactic ablative radiotherapy. Target delineation is commonly based on
four-dimensional computed tomography (CT) scans. Target volumes defined by
positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional')
(18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT.

MATERIALS AND METHODS: For 16 stage I non-small cell lung cancer tumours, six
approaches for deriving PET target volumes were evaluated: manual contouring,
standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV
(35%SUV(MAX)), 41% of SUV(MAX) (41%SUV(MAX)) and two different source to
background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum
intensity projection (MIP(MOD) ITV). Volumetric and positional correlation was
assessed using the Dice similarity coefficient (DSC).

RESULTS: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP(MOD) ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV(MAX) = 0.63, 41%SUV(MAX) = 0.57. SBR-1 = 0.52, SBR-2 =0.49. PET-based target volumes were smaller than corresponding MIP ITVs.

CONCLUSIONS: Conventional three-dimensional (18)F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use
(MIP(MOD) ITV). Caution is required in using three-dimensional PET for motion
encompassing target volume delineation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose : This study tests the hypothesis that 3-dimensional computed tomography (CT) reconstructions improve interobserver agreement on classification and treatment of coronoid fractures compared with 2-dimensional CT.

Methods : A total of 29 orthopedic surgeons evaluated 10 coronoid fractures on 2 occasions (first with radiographs and 2-dimensional CT and then with radiographs and 3-dimensional CT), separated by a minimum of 2 weeks. Surgeons classified fractures according to the classifications of Regan and Morrey and of O'Driscoll et al., identified specific characteristics, recommended the most appropriate treatment approach, and made treatment recommendations. The kappa multirater measure (κ) was calculated to estimate agreement between observers.

Results : Regardless of the imaging modality used, there was fair to moderate agreement for most of the observations. Three-dimensional CT improved interobserver agreement in Regan and Morrey's classsication (κ3-dimensional = 0.51 vs κ2-dimensional = 0.40; p < .001) and O'Driscoll et al.'s classifications (κ3-dimensional = 0.48 vs κ2-dimensional = 0.42; p = .009). There were trends toward better reliability for 3-dimensional reconstruction in recognition of coronoid tip fractures (κ3-dimensional = 0.19, κ2-dimensional = 0.03; p = .268), comminution (κ3-dimensional = 0.41 vs κ2-dimensional = 0.29; p = .133), and impacted fragments (κ3-dimensional = 0.39 vs κ2-dimensional = 0.27; p = .094), and in surgeons' opinions on the need for something other than screws or plate for surgical fixation (κ3-dimensional = 0.31 vs κ2-dimensional = 0.15; p = .138). Interobserver agreement on treatment approach was better with 2-dimensional CT (κ3-dimensional = 0.27, κ2-dimensional = 0.32; p = .015).

Conclusions :
Three-dimensional CT reconstructions improve interobserver agreement with respect to fracture classification compared with 2-dimensional CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surgical removal of impacted, supernumerary, or ectopic teeth is a routine procedure to the dental surgeon. Because any and all surgical interventions involve anatomic considerations that predispose the patient to a high risk of incidents or complications, it is absolutely necessary to precisely determine the location of the enclosed teeth, to better plan the procedure. Even though the conventional radiographic techniques are commonly used to detect the presence of such teeth, they can present deficiencies. In those situations, additional examinations can be requested. In this article, we are reporting the case of a 12-year-old patient, whose third superior molars appeared in a very atypical position. We chose to request a computed tomography and three-dimensional manipulation of the obtained images. This article, as its main goal, highlighted the importance of computed tomography and of three-dimensional reconstructions as a tool to precisely determine the location of enclosed teeth, thus allowing for a better planning of the surgery and a safer surgical intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To evaluate the accuracy and reproducibility of aortic annulus sizing using a multislice computed tomography (MSCT) based aortic root reconstruction tool compared with conventional imaging among patients evaluated for transcatheter aortic valve replacement (TAVR). Methods and results: Patients referred for TAVR underwent standard preprocedural assessment of aortic annulus parameters using MSCT, angiography and transoesophageal echocardiography (TEE). Three-dimensional (3-D) reconstruction of MSCT images of the aortic root was performed using 3mensio (3mensio Medical Imaging BV, Bilthoven, The Netherlands), allowing for semi-automated delineation of the annular plane and assessment of annulus perimeter, area, maximum, minimum and virtual diameters derived from area and perimeter (aVD and pVD). A total of 177 patients were enrolled. We observed a good inter-observer variability of 3-D reconstruction assessments with concordance coefficients for agreement of 0.91 (95% CI: 0.87-0.93) and 0.91 (0.88-0.94) for annulus perimeter and area assessments, respectively. 3-D derived pVD and aVD correlated very closely with a concordance coefficient of 0.97 (0.96-0.98) with a mean difference of 0.5±0.3 mm (pVD-aVD). 3-D derived pVD showed the best, but moderate concordance with diameters obtained from coronal MSCT (0.67, 0.56-0.75; 0.3±1.8 mm), and the lowest concordance with diameters obtained from TEE (0.42, 0.31-0.52; 1.9±1.9 mm). Conclusions: MSCT-based 3-D reconstruction of the aortic annulus using the 3mensio software enables accurate and reproducible assessment of aortic annulus dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion of lung tumors during respiration makes the accurate delivery of radiation therapy to the thorax difficult because it increases the uncertainty of target position. The adoption of four-dimensional computed tomography (4D-CT) has allowed us to determine how a tumor moves with respiration for each individual patient. Using information acquired during a 4D-CT scan, we can define the target, visualize motion, and calculate dose during the planning phase of the radiotherapy process. One image data set that can be created from the 4D-CT acquisition is the maximum-intensity projection (MIP). The MIP can be used as a starting point to define the volume that encompasses the motion envelope of the moving gross target volume (GTV). Because of the close relationship that exists between the MIP and the final target volume, we investigated four MIP data sets created with different methodologies (3 using various 4D-CT sorting implementations, and one using all available cine CT images) to compare target delineation. It has been observed that changing the 4D-CT sorting method will lead to the selection of a different collection of images; however, the clinical implications of changing the constituent images on the resultant MIP data set are not clear. There has not been a comprehensive study that compares target delineation based on different 4D-CT sorting methodologies in a patient population. We selected a collection of patients who had previously undergone thoracic 4D-CT scans at our institution, and who had lung tumors that moved at least 1 cm. We then generated the four MIP data sets and automatically contoured the target volumes. In doing so, we identified cases in which the MIP generated from a 4D-CT sorting process under-represented the motion envelope of the target volume by more than 10% than when measured on the MIP generated from all of the cine CT images. The 4D-CT methods suffered from duplicate image selection and might not choose maximum extent images. Based on our results, we suggest utilization of a MIP generated from the full cine CT data set to ensure a representative inclusive tumor extent, and to avoid geometric miss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To establish whether the use of a passive or active technique of planning target volume (PTV) definition and treatment methods for non-small cell lung cancer (NSCLC) deliver the most effective results. This literature review assesses the advantages and disadvantages in recent studies of each, while assessing the validity of the two approaches for planning and treatment. Methods A systematic review of literature focusing on the planning and treatment of radiation therapy to NSCLC tumours. Different approaches which have been published in recent articles are subjected to critical appraisal in order to determine their relative efficacy. Results Free-breathing (FB) is the optimal method to perform planning scans for patients and departments, as it involves no significant increase in cost, workload or education. Maximum intensity projection (MIP) is the fastest form of delineation, however it is noted to be less accurate than the ten-phase overlap approach for computed tomography (CT). Although gating has proven to reduce margins and facilitate sparing of organs at risk, treatment times can be longer and planning time can be as much as 15 times higher for intensity modulated radiation therapy (IMRT). This raises issues with patient comfort and stabilisation, impacting on the chance of geometric miss. Stereotactic treatments can take up to 3 hours to treat, along with increases in planning and treatment, as well as the additional hardware, software and training required. Conclusion Four-dimensional computed tomography (4DCT) is superior to 3DCT, with the passive FB approach for PTV delineation and treatment optimal. Departments should use a combination of MIP with visual confirmation ensuring coverage for stage 1 disease. Stages 2-3 should be delineated using ten-phases overlaid. Stereotactic and gated treatments for early stage disease should be used accordingly; FB-IMRT is optimal for latter stage disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. To investigate the robustness of single vocal cord intensity modulated radiation therapy (IMRT) treatment plans for set-up errors, respiration, and deformation. Material and methods. Four-dimensional computed tomography (4D-CT) scans of 10 early glottic carcinoma patients, previously treated with conventional techniques, were used in this simulation study. For each patient a pre-treatment 4D-CT was used for IMRT planning, generating a reference dose distribution. Prescribed PTV dose was 66 Gy. The impact of systematic set-up errors was simulated by applying shifts of ± 2 mm to the planning CT scans, followed by dose re-calculation with original beam segments, MUs, etc. Effects of respiration and deformation were determined utilizing extreme inhale and exhale CT scans, and repeat scans acquired after 22 Gy, 44 Gy, and 66 Gy, respectively. All doses were calculated using Monte Carlo dose simulations. Results. Considering all investigated geometrical perturbations, reductions in the clinical target volume (CTV) V95%, D98%, D2%, and generalized equivalent uniform dose (gEUD) were limited to 1.2 ± 2.2%, 2.4 ± 2.9%, 0.2 ± 1.8%, and 0.6 ± 1.1 Gy, respectively. The near minimum dose, D98%, was always higher than 89%, and gEUD always remained higher than 66 Gy. Planned contra-lateral (CL) vocal cord DMean, gEUD, and V40 Gy were 38.2 ± 6.0 Gy, 43.4 ± 5.6 Gy, and 42.7 ± 14.9%. With perturbations these values changed by -0.1 ± 4.3 Gy, 0.1 ± 4.0 Gy, and -1.0 ± 9.6%, respectively. Conclusions. On average, CTV dose reductions due to geometrical perturbations were very low, and sparing of the CL vocal cord was maintained. In a few observations (6 of 103 simulated situations), the near-minimum CTV-dose was around 90%, requiring attention in deciding on a future clinical protocol. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target delineation of lung cancer. Methods: To determine whether cine CT could substitute 4D-CT for small mobile lung tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 tumors with intrafractional motion greater than 1 cm. We assessed dose calculation by comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-averaged 4D-CT using the gamma index. A threshold-based PET segmentation model of size, motion, and source-to-background was developed from phantom scans and validated with 24 lung tumors. Finally, feasibility of integrating cine CT and PET for contouring was assessed on a small group of larger tumors. Results: Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-contrast and low-contrast tumors respectively which was within intraobserver variation. Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 73 patients. The segmentation model fit the phantom data with R2 = 0.96 and produced PET target volumes that matched CT better than 6 published methods (-5.15%). Application of the model to more complex tumors produced mixed results and further research is necessary to adequately integrate PET and cine CT for delineation. Conclusions: Cine CT can be used for target delineation of small mobile lesions with minimal differences to 4D-CT. PET, utilizing the segmentation model, can provide additional contrast. Additional research is required to assess the efficacy of complex tumor delineation with cine CT and PET. Respiratory-averaged cine CT can substitute respiratory-averaged 4D-CT for dose calculation with negligible differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element analysis was used to compare the effect of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible. Four models of an human mandible were constructed. In the OR (O'ring) group, the mandible was restored with an overdenture retained by four unsplinted implants with O'ring attachment; in the BC (bar-clip) -C and BC groups, the mandibles were restored with overdentures retained by four splinted implants with bar-clip anchor associated or not with two distally placed cantilevers, respectively; in the FD (fixed denture) group, the mandible was restored with a fixed full-arch four-implant-supported prosthesis. Models were supported by the masticatory muscles and temporomandibular joints. A 100-N oblique load was applied on the left first molar. Von Mises (σvM), maximum (σmax) and minimum (σmin) principal stresses (in MPa) analyses were obtained. BC-C group exhibited the highest stress values (σvM=398.8, σmax=580.5 and σmin=-455.2) while FD group showed the lowest one (σvM=128.9, σmax=185.9 and σmin=-172.1). Within overdenture groups, the use of unsplinted implants reduced the stress level in the implant/prosthetic components (59.4% for σvM, 66.2% for σmax and 57.7% for σmin versus BC-C group) and supporting tissues (maximum stress reduction of 72% and 79.5% for σmax, and 15.7% and 85.7% for σmin on the cortical and trabecular bones, respectively). Cortical bone exhibited greater stress concentration than the trabecular bone for all groups. The use of fixed implant dentures and removable dentures retained by unsplinted implants to rehabilitate edentulous mandible reduced the stresses in the periimplant bone tissue, mucosa and implant/prosthetic components. © 2013 Elsevier Ltd.