998 resultados para Forest inventory


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis applies the customer value hierarchy model to forestry in order to determine strategic options to enhance the value of LiDAR technology in Russian forestry. The study is conducted as a qualitative case study with semi-structured interviews as a main source of the primary data. The customer value hierarchy model constitutes a theoretical base for the research. Secondary data incorporates information on forest resource management, LiDAR technology and Russian forestry. The model is operationalised using forestry literature and forms a basis for analyses of primary data. Analyses of primary data coupled with comprehension of Russian forest inventory system and knowledge on global forest inventory have led to conclusions on the forest inventory methods selection criteria and the organizations that would benefit the most from LiDAR technology use. The thesis recommends strategic options for LiDAR technology’s value enhancement in Russian forestry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research report applies the customer value hierarchy model to forestry in order to determine strategic options to enhance the value of LiDAR technology in Russian forestry. The study is conducted as a qualitative case study with semi-structured interviews as a main source of the primary data. The customer value hierarchy model constitutes a theoretical base for the research. Secondary data incorporates information on forest resource management, LiDAR technology and Russian forestry. The model is operationalised using forestry literature and forms a basis for analyses of primary data. Analyses of primary data coupled with comprehension of Russian forest inventory system and knowledge on global forest inventory have led to conclusions on the forest inventory methods selection criteria and the organizations that would benefit the most from LiDAR technology use. The report recommends strategic options for LiDAR technology’s value enhancement in Russian forestry. This work has been conducted as a part of the project ‘Finnish-Russian Forest Academy 2 - Exploiting and Piloting’, which has been supported financially by the South-East Finland- Russia ENPI CBC 2007-2014 Programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiDAR is an advanced remote sensing technology with many applications, including forest inventory. The most common type is ALS (airborne laser scanning). The method is successfully utilized in many developed markets, where it is replacing traditional forest inventory methods. However, it is innovative for Russian market, where traditional field inventory dominates. ArboLiDAR is a forest inventory solution that engages LiDAR, color infrared imagery, GPS ground control plots and field sample plots, developed by Arbonaut Ltd. This study is an industrial market research for LiDAR technology in Russia focused on customer needs. Russian forestry market is very attractive, because of large growing stock volumes. It underwent drastic changes in 2006, but it is still in transitional stage. There are several types of forest inventory, both with public and private funding. Private forestry enterprises basically need forest inventory in two cases – while making coupe demarcation before timber harvesting and as a part of forest management planning, that is supposed to be done every ten years on the whole leased territory. The study covered 14 companies in total that include private forestry companies with timber harvesting activities, private forest inventory providers, state subordinate companies and forestry software developer. The research strategy is multiple case studies with semi-structured interviews as the main data collection technique. The study focuses on North-West Russia, as it is the most developed Russian region in forestry. The research applies the Voice of the Customer (VOC) concept to elicit customer needs of Russian forestry actors and discovers how these needs are met. It studies forest inventory methods currently applied in Russia and proposes the model of method comparison, based on Multi-criteria decision making (MCDM) approach, mainly on Analytical Hierarchy Process (AHP). Required product attributes are classified in accordance with Kano model. The answer about suitability of LiDAR technology is ambiguous, since many details should be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.