917 resultados para Forest Processor
Resumo:
The rationalization of forest harvesting and minimization costs is a constant search by the managers involved in this process, making them decide practices which are economically viable to optimize that operation. This study aimed to evaluate technically and economically the performance of feller-buncher and the forest processor in stands of eucalypts in first cut. The technique analysis included time and movements, productivity, efficiency operational and mechanical availability. The economic analysis included the parameters operational cost, harvesting cost and energy consumption. Aiming the optimization the cost of forest harvesting, the system composed by feller-buncher and processor forest presented itself as a technically and economically viable alternative to harvesting eucalypt in first cut or stands that do not have bifurcated trees.
Resumo:
O processo constante de avaliação técnica e econômica dos sistemas de colheita de madeira é intrínseco às empresas florestais, devido ao fato de corresponder a uma fase de suma importância que despende elevado investimento financeiro. No experimento deste trabalho, estudaram-se o rendimento operacional e custos operacionais e de produção do processador florestal Hypro. A análise técnica englobou estudos de tempos e movimentos pelo método de tempo contínuo. O rendimento operacional foi determinado através do volume, em metros cúbicos de madeira processada. A análise econômica incorporou os parâmetros do custo operacional, custo de processamento da madeira e rendimento energético. A análise dos dados evidenciou que o rendimento operacional por hora efetiva de trabalho foi de 38 árvores e, em metros cúbicos sem casca por hora efetiva de trabalho, de 11,68 m³ h-1, com custo de processamento de madeira sem casca de US$ 6.85 por metro cúbico.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.
Resumo:
This exhibition was the outcome of a personal arts-based exploration of the meaning of interiority. Through the process it was found that existentially the architectural wall differentiating inside from outside does not exist but operates as a space of overlap, a groundless ground providing for dwelling in the real existential sense of the word.
Resumo:
Field experiences for young children are an ideal medium for environmental education/education for sustainability because of opportunities for direct experience in nature, integrated learning, and high community involvement. This research documented the development - in 4-5 year old Prep children - of knowledge, attitudes and actions/advocacy in support of an endangered native Australian animal, the Greater Bilby. Data indicated that children gained new knowledge, changed attitudes and built a repertoire of action/ advocacy strategies in native animal conservation as a result of participating in a forest field adventure. The curriculum and pedagogical features that supported these young children’s learning include: active engagement in a natural environment, learning through curriculum integration at home and at school, anthropomorphic representations of natural elements, making connections with cultural practices, and intergenerational learning. The paper also highlights research strategies that can be usefully and ethically applied when conducting studies involving young children.
Resumo:
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.
Resumo:
Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.