940 resultados para Forecasting areas
Resumo:
As florestas são uma fonte importante de recursos naturais, desempenhando um papel fulcral na sustentabilidade ambiental. A sua gestão quer territorial quer económica, conduz a uma maximização da produção, sem alteração da qualidade da matéria-prima. Portugal apresenta mais de um terço do seu território coberto por floresta, apresentando uma possibilidade de aplicação de sistemas de gestão, territorial e económica que maximizem a sua produção. Os Sistemas de Informação Geográfica (SIG) são modelos da realidade em que é possível integrar toda a informação disponível sobre um assunto tendo por base um campo comum a todos as variáveis, a localização geográfica. Os SIG podem contribuir de diversas formas para um maior desenvolvimento das rotinas e ferramentas de planeamento e gestão florestal. A sua integração com modelos quantitativos para planeamento e gestão de florestas é uma mais-valia nesta área. Nesta dissertação apresentam-se modelos geoestatísticos, com recurso a Sistemas de Informação Geográfica, de apoio e suporte à produção de pinha em Pinheiro-manso (Pinus pinea L.). Procurando estimar as áreas com melhor propensão à produção, a partir de dados amostrais. Estes foram previamente estudados tendo sido selecionadas quatro variáveis: largura da copa, área basal, altura da árvore e produção de pinha. A geoestatística aplicada, inclui modelos de correlação espacial: kriging, onde são atribuídos pesos às amostras a partir de uma análise espacial baseada no variograma experimental. Foi utilizada a extensão Geostatistical Analyst do ArcGis da ESRI, para realizar 96 krigings para as quatro variáveis em estudo, com diferentes parametrizações, destes foram selecionados 8 krigings. Com base nos critérios de adequação dos modelos e da análise de resultados da predição dos erros - cross validation. O resultado deste estudo é apresentado através de mapas de previsão para a produção de pinha em Pinheiro manso, em que foram analisadas áreas com maior e menor probabilidade de produção tendo-se realizado análises de comparação de variáveis. Através da interseção de todas as variáveis com a produção, podemos concluir que os concelhos com maiores áreas de probabilidade de produção de pinha em Pinheiro manso, da área de estudo, são Alcácer do Sal, Montemor-o-Novo, Vendas Novas, Coruche e Chamusca. Com a realização de um cruzamento de dados entre os resultados obtidos dos krigings, e a Carta de Uso e Ocupação do Solo de Portugal Continental para 2007 (COS2007), realizaram-se mapas de previsão para a expansão do Pinheiro manso. Nas áreas de expansão conseguimos atingir aumentos mínimos na ordem dos 11% e máximo na ordem dos 61%. No total consegue-se atingir aproximadamente 128 mil ha para área de expansão do Pinheiro manso. Superando, os valores esperados pelos Planos Regionais de Ordenamento Florestal, abrangidos pela área da amostra em estudo, em que é esperado um incremento de cerca de 130 mil hectares de área de Pinheiro manso para 2030.
Resumo:
Species' geographic ranges are usually considered as basic units in macroecology and biogeography, yet it is still difficult to measure them accurately for many reasons. About 20 years ago, researchers started using local data on species' occurrences to estimate broad scale ranges, thereby establishing the niche modeling approach. However, there are still many problems in model evaluation and application, and one of the solutions is to find a consensus solution among models derived from different mathematical and statistical models for niche modeling, climatic projections and variable combination, all of which are sources of uncertainty during niche modeling. In this paper, we discuss this approach of ensemble forecasting and propose that it can be divided into three phases with increasing levels of complexity. Phase I is the simple combination of maps to achieve a consensual and hopefully conservative solution. In Phase II, differences among the maps used are described by multivariate analyses, and Phase III consists of the quantitative evaluation of the relative magnitude of uncertainties from different sources and their mapping. To illustrate these developments, we analyzed the occurrence data of the tiger moth, Utetheisa ornatrix (Lepidoptera, Arctiidae), a Neotropical moth species, and modeled its geographic range in current and future climates.
Resumo:
Transportation Department, Office of University Research, Washington, D.C.
Resumo:
Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.
Resumo:
Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.
Resumo:
Forecasting coal resources and reserves is critical for coal mine development. Thickness maps are commonly used for assessing coal resources and reserves; however they are limited for capturing coal splitting effects in thick and heterogeneous coal zones. As an alternative, three-dimensional geostatistical methods are used to populate facies distributionwithin a densely drilled heterogeneous coal zone in the As Pontes Basin (NWSpain). Coal distribution in this zone is mainly characterized by coal-dominated areas in the central parts of the basin interfingering with terrigenous-dominated alluvial fan zones at the margins. The three-dimensional models obtained are applied to forecast coal resources and reserves. Predictions using subsets of the entire dataset are also generated to understand the performance of methods under limited data constraints. Three-dimensional facies interpolation methods tend to overestimate coal resources and reserves due to interpolation smoothing. Facies simulation methods yield similar resource predictions than conventional thickness map approximations. Reserves predicted by facies simulation methods are mainly influenced by: a) the specific coal proportion threshold used to determine if a block can be recovered or not, and b) the capability of the modelling strategy to reproduce areal trends in coal proportions and splitting between coal-dominated and terrigenousdominated areas of the basin. Reserves predictions differ between the simulation methods, even with dense conditioning datasets. Simulation methods can be ranked according to the correlation of their outputs with predictions from the directly interpolated coal proportion maps: a) with low-density datasets sequential indicator simulation with trends yields the best correlation, b) with high-density datasets sequential indicator simulation with post-processing yields the best correlation, because the areal trends are provided implicitly by the dense conditioning data.
Resumo:
AimGlobal environmental changes challenge traditional conservation approaches based on the selection of static protected areas due to their limited ability to deal with the dynamic nature of driving forces relevant to biodiversity. The Natura 2000 network (N2000) constitutes a major milestone in biodiversity conservation in Europe, but the degree to which this static network will be able to reach its long-term conservation objectives raises concern. We assessed the changes in the effectiveness of N2000 in a Mediterranean ecosystem between 2000 and 2050 under different combinations of climate and land cover change scenarios. LocationCatalonia, Spain. MethodsPotential distribution changes of several terrestrial bird species of conservation interest included in the European Union's Birds Directive were predicted within an ensemble-forecasting framework that hierarchically integrated climate change and land cover change scenarios. Land cover changes were simulated using a spatially explicit fire-succession model that integrates fire management strategies and vegetation encroachment after the abandonment of cultivated areas as the main drivers of landscape dynamics in Mediterranean ecosystems. ResultsOur results suggest that the amount of suitable habitats for the target species will strongly decrease both inside and outside N2000. However, the effectiveness of N2000 is expected to increase in the next decades because the amount of suitable habitats is predicted to decrease less inside than outside this network. Main conclusionsSuch predictions shed light on the key role that the current N2000may play in the near future and emphasize the need for an integrative conservation perspective wherein agricultural, forest and fire management policies should be considered to effectively preserve key habitats for threatened birds in fire-prone, highly dynamic Mediterranean ecosystems. Results also show the importance of considering landscape dynamics and the synergies between different driving forces when assessing the long-term effectiveness of protected areas for biodiversity conservation.
Resumo:
Demand forecasting is one of the fundamental managerial tasks. Most companies do not know their future demands, so they have to make plans based on demand forecasts. The literature offers many methods and approaches for producing forecasts. When selecting the forecasting approach, companies need to estimate the benefits provided by particular methods, as well as the resources that applying the methods call for. Former literature points out that even though many forecasting methods are available, selecting a suitable approach and implementing and managing it is a complex cross-functional matter. However, research that focuses on the managerial side of forecasting is relatively rare. This thesis explores the managerial problems that are involved when demand forecasting methods are applied in a context where a company produces products for other manufacturing companies. Industrial companies have some characteristics that differ from consumer companies, e.g. typically a lower number of customers and closer relationships with customers than in consumer companies. The research questions of this thesis are: 1. What kind of challenges are there in organizing an adequate forecasting process in the industrial context? 2. What kind of tools of analysis can be utilized to support the improvement of the forecasting process? The main methodological approach in this study is design science, where the main objective is to develop tentative solutions to real-life problems. The research data has been collected from two organizations. Managerial problems in organizing demand forecasting can be found in four interlinked areas: 1. defining the operational environment for forecasting, 2. defining the forecasting methods, 3. defining the organizational responsibilities, and 4. defining the forecasting performance measurement process. In all these areas, examples of managerial problems are described, and approaches for mitigating these problems are outlined.
Resumo:
A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.
Resumo:
A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management and flood forecasting. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy.
Resumo:
An important part of strategic planning’s purpose should be to attempt to forecast the future, not simply to belatedly respond to events, or accept the future as inevitable. This paper puts forward a conceptual approach for seeking to achieve these aims and uses the Bournemouth and Poole area in Dorset as a vehicle for applying the basic methodology. The area has been chosen because of the significant issues that it currently faces in planning terms; and its future development possibilities. In order that alternative future choices for the area – different ‘developmental trajectories’ – can be evaluated, they must be carefully and logically constructed. Four Futures for Bournemouth/Poole have been put forward; they are titled and colour-coded: Future One is Maximising Growth – Golden Prospect which seeks to achieve the highest level of economic prosperity of the area; Future Two is Incremental Growth – Solid Silver which attempts to facilitate a steady, continuing, controlled pattern of the development for the area; Future Three is Steady State – Cobalt Blue which suggests that people in the area could be more concerned with preserving their quality of life in terms of their leisure and recreation rather than increasing wealth; Future Four is Environment First – Jade Green which makes the area’s environmental protection its top priority even at the possible expense of economic prosperity. The scenarios proposed here are not sacrosanct. Nor are they simply confined to the Bournemouth and Poole area. In theory, suitably modified, they could use in a variety of different contexts. Consideration of the scenarios – wherever located - might then generate other, additional scenarios. These are called hybrids, alloys and amalgams. Likewise it might identify some of them as inappropriate or impossible. Most likely, careful consideration of the scenarios will suggest hybrid scenarios, in which features from different scenarios are combined to produce alternative or additional futures for consideration. The real issue then becomes how best to fashion such a future for the particular area under consideration
Resumo:
Recent research has shown that Lighthill–Ford spontaneous gravity wave generation theory, when applied to numerical model data, can help predict areas of clear-air turbulence. It is hypothesized that this is the case because spontaneously generated atmospheric gravity waves may initiate turbulence by locally modifying the stability and wind shear. As an improvement on the original research, this paper describes the creation of an ‘operational’ algorithm (ULTURB) with three modifications to the original method: (1) extending the altitude range for which the method is effective downward to the top of the boundary layer, (2) adding turbulent kinetic energy production from the environment to the locally produced turbulent kinetic energy production, and, (3) transforming turbulent kinetic energy dissipation to eddy dissipation rate, the turbulence metric becoming the worldwide ‘standard’. In a comparison of ULTURB with the original method and with the Graphical Turbulence Guidance second version (GTG2) automated procedure for forecasting mid- and upper-level aircraft turbulence ULTURB performed better for all turbulence intensities. Since ULTURB, unlike GTG2, is founded on a self-consistent dynamical theory, it may offer forecasters better insight into the causes of the clear-air turbulence and may ultimately enhance its predictability.
Resumo:
1. It has been postulated that climate warming may pose the greatest threat species in the tropics, where ectotherms have evolved more thermal specialist physiologies. Although species could rapidly respond to environmental change through adaptation, little is known about the potential for thermal adaptation, especially in tropical species. 2. In the light of the limited empirical evidence available and predictions from mutation-selection theory, we might expect tropical ectotherms to have limited genetic variance to enable adaptation. However, as a consequence of thermodynamic constraints, we might expect this disadvantage to be at least partially offset by a fitness advantage, that is, the ‘hotter-is-better’ hypothesis. 3. Using an established quantitative genetics model and metabolic scaling relationships, we integrate the consequences of the opposing forces of thermal specialization and thermodynamic constraints on adaptive potential by evaluating extinction risk under climate warming. We conclude that the potential advantage of a higher maximal development rate can in theory more than offset the potential disadvantage of lower genetic variance associated with a thermal specialist strategy. 4. Quantitative estimates of extinction risk are fundamentally very sensitive to estimates of generation time and genetic variance. However, our qualitative conclusion that the relative risk of extinction is likely to be lower for tropical species than for temperate species is robust to assumptions regarding the effects of effective population size, mutation rate and birth rate per capita. 5. With a view to improving ecological forecasts, we use this modelling framework to review the sensitivity of our predictions to the model’s underpinning theoretical assumptions and the empirical basis of macroecological patterns that suggest thermal specialization and fitness increase towards the tropics. We conclude by suggesting priority areas for further empirical research.
Resumo:
This paper describes some recent advances and contributions to our understanding of economic forecasting. The framework we develop helps explain the findings of forecasting competitions and the prevalence of forecast failure. It constitutes a general theoretical background against which recent results can be judged. We compare this framework to a previous formulation, which was silent on the very issues of most concern to the forecaster. We describe a number of aspects which it illuminates, and draw out the implications for model selection. Finally, we discuss the areas where research remains needed to clarify empirical findings which lack theoretical explanations.
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.