916 resultados para Forecast accuracy
Resumo:
Resumen tomado de la publicación
Resumo:
Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.
Resumo:
This paper assesses the influence of an adoption of IAS/IFRS or US GAAP on the financial analysts’ forecast accuracy in a homogenous institutional framework. Our findings suggest that the forecast accuracy is higher for estimates based on IFRS or US GAAP data than for forecasts based on German GAAP data.Moreover, in the year of switching from German GAAP to US GAAP the forecast accuracy is lower than in other years. The paper contributes to prior research by providing evidence about the usefulness of international accounting data and about the adoption effects of a change to such accounting principles.
Resumo:
We examine the predictive ability and consistency properties of exchange rate expectations for the dollar/euro using a survey conducted in Spain by PwC among a panel of experts and entrepreneurs. Our results suggest that the PwC panel have some forecasting ability for time horizons from 3 to 9 months, although only for the 3-month ahead expectations we obtain marginal evidence of unbiasedness and efficiency in the forecasts. As for the consistency properties of the exchange rate expectations formation process, we find that survey participants form stabilising expectations in the short-run and destabilising expectations in the long- run and that the expectation formation process is closer to fundamentalists than chartists.
Resumo:
We compare and contrast the accuracy and uncertainty in forecasts of rents with those for a variety of macroeconomic series. The results show that in general forecasters tend to be marginally more accurate in the case of macro-economic series than with rents. In common across all of the series, forecasts tend to be smoothed with forecasters under-estimating performance during economic booms, and vice-versa in recessions We find that property forecasts are affected by economic uncertainty, as measured by disagreement across the macro-forecasters. Increased uncertainty leads to increased dispersion in the rental forecasts and a reduction in forecast accuracy.
Resumo:
Survey respondents who make point predictions and histogram forecasts of macro-variables reveal both how uncertain they believe the future to be, ex ante, as well as their ex post performance. Macroeconomic forecasters tend to be overconfident at horizons of a year or more, but overestimate (i.e., are underconfident regarding) the uncertainty surrounding their predictions at short horizons. Ex ante uncertainty remains at a high level compared to the ex post measure as the forecast horizon shortens. There is little evidence of a link between individuals’ ex post forecast accuracy and their ex ante subjective assessments.
Resumo:
This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data
Resumo:
This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown) 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio). However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.
Resumo:
Using a sample of 2,200 US listed firm year observations (2001-2007)this study shows a positive (negative) relation between female participation in corporate boards and analysts' earnings forecast accuracy (dispersion), after controlling for earnings quality, corporate governance, audit quality, stock price informativeness and potential endogeneity. Our findings are important as they suggest that board diversity adds to the transparency and accuracy of financial reports such that earnings expectations are likely to be more accurate for these firms.
Resumo:
This paper reports on a purposive survey study which aimed to identify needs for the development, delivery and evaluation of applied climate education for targeted groups, to improve knowledge and skills to better manage under variable climatic conditions. The survey sample consisted of 80 producers and other industry stakeholders in Australia (including representatives from consulting, agricultural extension and agricultural education sectors), with a 58% response rate to the survey. The survey included an assessment of (i) knowledge levels of the Southern Oscillation Index and sea surface temperatures, and (ii) skill and ability in interpreting weather and climate parameters. Results showed that despite many of the respondents having more than 20 years experience in their industry, the only formal climate education or training undertaken by most was a 1-day workshop. Over 80% of the applied climate skills listed in the survey were regarded by respondents as essential or important, but only 42% of educators, 30% of consultants and 28% of producers rated themselves as competent in applying such skills. Essential skills were deemed as those that would enable respondents or their clients to be better prepared for the next extended wet or dry meteorological event, and improved capability in identifying and capitalising on key decision points from climate information and a seasonal climate outlook. The complex issue of forecast accuracy is a confounding obstacle for many in the application of climate information and forecasts in management. Addressing this problem by describing forecast 'limitations and skill' can help to overcome this problem. The survey also highlighted specific climatic tactical and strategic information collated from grazing, cropping and agribusiness enterprises, and showed the value of such information from a users perspective.
Resumo:
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.
Resumo:
This work illustrates the influence of wind forecast errors on system costs, wind curtailment and generator dispatch in a system with high wind penetration. Realistic wind forecasts of different specified accuracy levels are created using an auto-regressive moving average model and these are then used in the creation of day-ahead unit commitment schedules. The schedules are generated for a model of the 2020 Irish electricity system with 33% wind penetration using both stochastic and deterministic approaches. Improvements in wind forecast accuracy are demonstrated to deliver: (i) clear savings in total system costs for deterministic and, to a lesser extent, stochastic scheduling; (ii) a decrease in the level of wind curtailment, with close agreement between stochastic and deterministic scheduling; and (iii) a decrease in the dispatch of open cycle gas turbine generation, evident with deterministic, and to a lesser extent, with stochastic scheduling.
Resumo:
We propose two simple evaluation methods for time varying density forecasts of continuous higher dimensional random variables. Both methods are based on the probability integral transformation for unidimensional forecasts. The first method tests multinormal densities and relies on the rotation of the coordinate system. The advantage of the second method is not only its applicability to any continuous distribution but also the evaluation of the forecast accuracy in specific regions of its domain as defined by the user’s interest. We show that the latter property is particularly useful for evaluating a multidimensional generalization of the Value at Risk. In simulations and in an empirical study, we examine the performance of both tests.
Resumo:
Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística