918 resultados para Forced-air


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the forced-air cooling process of fruits occurs, besides the convective heat transfer, the mass transfer by evaporation. The energy need in the evaporation is taken from fruit that has its temperature lowered. In this study it has been proposed the use of empirical correlations for calculating the convective heat transfer coefficient as a function of surface temperature of the strawberry during the cooling process. The aim of this variation of the convective coefficient is to compensate the effect of evaporation in the heat transfer process. Linear and exponential correlations are tested, both with two adjustable parameters. The simulations are performed using experimental conditions reported in the literature for the cooling of strawberries. The results confirm the suitability of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to precool cauliflower using forced-air, vacuum and high and low flow hydro cooling methods. The weight of the precooled cauliflower heads (5000±5 g) was measured before they were placed in standard plastic crates. Cauliflower heads, whose initial temperature was 23.5 ± 0.5 ºC, were cooled until the temperature reached at 1 ºC. During the precooling process, time-dependent temperature and energy consumption were measured, and during vacuum precooling, the decreasing pressure values were recorded, and a curve of time-dependent pressure decrease (vacuum) was built. The most suitable cooling method to precool cauliflower in terms of cooling time and energy consumption was vacuum, followed by the high and low flow hydro and forced-air precooling methods, respectively. The highest weight loss was observed in the vacuum precooling method, followed by the forced-air method. However, there was an increase in the weight of the cauliflower heads in the high and low flow hydro precooling method. The best colour and hardness values were found in the vacuum precooling method. Among all methods tested, the most suitable method to precool cauliflower in terms of cooling and quality parameters was the vacuum precooling method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cauliflower heads, which were precooled using four different methods including vacuum, forced-air, and high and low flow hydro precooling, were stored under controlled atmosphere and room conditions. Controlled atmosphere conditions (CA) were as follows: 1°C temperature, 90 ± 5% relative humidity, and 0:21 [(%CO2:%O2) – (0:21) control] atmosphere composition. Room conditions (RC) were: 22±1°C temperature and 55-60% humidity. Various quality parameters of the cauliflower heads were assessed during storage (days 0, 7, 14, 21, 28, and 35) under controlled atmosphere and room conditions (days 0, 5, and 10). During storage, weight loss, deterioration rate, overall sensory quality score, hardness, and colour (L, a, b, C and α) were evaluated. In the present study, the strength and quality parameters of cauliflower under CA and RC conditions were obtained. Vacuum precooling was found to be most suitable method before cauliflower was submitted to cold storage and sent to market. Furthermore, the storage of cauliflower without precooling resulted in a significant decrease in quality parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Several adverse consequences are caused by mild perioperative hypothermia. Maintaining normothermia with patient warming systems, today mostly with forced air (FA), has thus become a standard procedure during anesthesia. Recently, a polymer-based resistive patient warming system was developed. We compared the efficacy of a widely distributed FA system with the resistive-polymer (RP) system in a prospective, randomized clinical study. METHODS: Eighty patients scheduled for orthopedic surgery were randomized to either FA warming (Bair Hugger warming blanket #522 and blower #750, Arizant, Eden Prairie, MN) or RP warming (Hot Dog Multi-Position Blanket and Hot Dog controller, Augustine Biomedical, Eden Prairie, MN). Core temperature, skin temperature (head, upper and lower arm, chest, abdomen, back, thigh, and calf), and room temperature (general and near the patient) were recorded continuously. RESULTS: After an initial decrease, core temperatures increased in both groups at comparable rates (FA: 0.33 degrees C/h +/- 0.34 degrees C/h; RP: 0.29 degrees C/h +/- 0.35 degrees C/h; P = 0.6). There was also no difference in the course of mean skin and mean body (core) temperature. FA warming increased the environment close to the patient (the workplace of anesthesiologists and surgeons) more than RP warming (24.4 degrees C +/- 5.2 degrees C for FA vs 22.6 degrees C +/- 1.9 degrees C for RP at 30 minutes; P(AUC) <0.01). CONCLUSION: RP warming performed as efficiently as FA warming in patients undergoing orthopedic surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. METHODS: Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. RESULTS: Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). CONCLUSIONS: Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work approaches the forced air cooling of strawberry by numerical simulation. The mathematical model that was used describes the process of heat transfer, based on the Fourier's law, in spherical coordinates and simplified to describe the one-dimensional process. For the resolution of the equation expressed for the mathematical model, an algorithm was developed based on the explicit scheme of the numerical method of the finite differences and implemented in the scientific computation program MATLAB 6.1. The validation of the mathematical model was made by the comparison between theoretical and experimental data, where strawberries had been cooled with forced air. The results showed to be possible the determination of the convective heat transfer coefficient by fitting the numerical and experimental data. The methodology of the numerical simulations was showed like a promising tool in the support of the decision to use or to develop equipment in the area of cooling process with forced air of spherical fruits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Postharvest losses vary among the different vegetable products. However, among fruits and vegetables the losses generally range from 30% to 50%. Thus, this paper aimed the application of 1-methylcycloprene (1-MCP) and fast cooling with forced air (PC) on peaches, in order to estimate their effects in the ripening process of this fruit. Physiological analyses were performed, such as loss of fresh mass, firmness, pH, titratable acidity, soluble solids, ratio and CO2 production, as well as sensorial analyses such as color, texture and flavor. The experiment was divided in two phases. In the first one, concentrations of 30, 60, and 90 nL/L 1-MCP, applied at 0 ºC and 20 ºC, were tested. The fruits treated without 1-MCP were denominated control for both temperatures studied. The second phase was composed by the following treatments: cold storage (CS) or control, cooling with forced air (CFA), cooling with forced air followed by 1-MCP application (CFA + 1-MCP) and 1-MCP application (1-MCP). Among these, the CFA + 1-MCP treatment provided more firmness of the fruits in comparison to the control fruits. The respiratory rate of peaches under CFA and CFA + 1-MCP treatments decreased in comparison to the control fruit respiratory rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Losses of horticulture product in Brazil are significant and among the main causes are the use of inappropriate boxes and the absence of a cold chain. A project for boxes is proposed, based on computer simulations, optimization and experimental validation, trying to minimize the amount of wood associated with structural and ergonomic aspects and the effective area of the openings. Three box prototypes were designed and built using straight laths with different configurations and areas of openings (54% and 36%). The cooling efficiency of Tommy Atkins mango (Mangifera Indica L.) was evaluated by determining the cooling time for fruit packed in the wood models and packed in the commercially used cardboard boxes, submitted to cooling in a forced-air system, at a temperature of 6ºC and average relative humidity of 85.4±2.1%. The Finite Element Method was applied, for the dimensioning and structural optimization of the model with the best behavior in relation to cooling. All wooden boxes with fruit underwent vibration testing for two hours (20 Hz). There was no significant difference in average cooling time in the wooden boxes (36.08±1.44 min); however, the difference was significant in comparison to the cardboard boxes (82.63±29.64 min). In the model chosen for structural optimization (36% effective area of openings and two side laths), the reduction in total volume of material was 60% and 83% in the cross section of the columns. There was no indication of mechanical damage in the fruit after undergoing the vibration test. Computer simulations and structural study may be used as a support tool for developing projects for boxes, with geometric, ergonomic and thermal criteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: A hipotermia é prejudicial no período perioperatório. Não há consenso sobre o melhor método de aquecimento ativo e nem sobre o melhor período para fazê-lo. Este estudo teve como objetivo primário verificar a eficácia de diferentes períodos de utilização da manta térmica à temperatura de 38°C, como método de prevenção da hipotermia intraoperatória. Como objetivo secundário avaliou-se os efeitos adversos do uso da manta térmica na temperatura de 38°C. MÉTODOS: Foram comparados quatro grupos de 15 pacientes submetidos a operações ortopédicas. No grupo controle (Gcont) os pacientes não utilizaram manta térmica, nos grupos pré (Gpré), intra (Gintra) e total (Gtotal), os pacientes utilizaram manta térmica a 38ºC, respectivamente, durante 30 minutos antes da indução anestésica, após a indução anestésica até 120 minutos e antes e após a indução. Foram avaliados: temperatura central (timpânica), periférica (pele), da sala cirúrgica, variação das condições hemodinâmicas e efeitos adversos do aquecimento. RESULTADOS: O Gtotal foi o único grupo que não teve variação significativa da temperatura central. A temperatura central dos pacientes do grupo Gtotal foi significativamente maior (p <0,05) do que a dos outros grupos aos 60 e 120 min após a indução. Os pacientes dos grupos Gcont, Gpré e Gintra apresentaram hipotermia aos 60 min. CONCLUSÃO: O uso da manta térmica com fluxo de ar aquecido foi eficaz como método de prevenção da hipotermia intraoperatória quando foi empregada desde 30 min antes da indução anestésica até 120 min após o início da anestesia. Nas condições do estudo não ocorreram eventos adversos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relationships were examined between environmental conditions mediated by packaging and handling and the deterioration of harvested Geraldton waxflower cv. 'Fortune Cookie'. Disease severity plus flower and leaf drop caused by inoculation with Botrytis cinerea were reduced by lowering handling temperatures to 0, 5 or 5/20 degreesC alternated daily, versus 20 degreesC. They were also reduced by inhibition of ethylene action with a silver thiosulfate pulse pretreatment. Additionally, treatments that enhanced water loss, such as packing dry, keeping forced air-cooling holes open and strategic placement of extra ventilation holes may also reduce disease severity and flower plus leaf fall. Inclusion of KMnO4-based Bloomfresh ethylene scrubbing sachets in packages did not reduce disease severity or lessen flower plus leaf fall. Thus, deterioration of waxflower packaged in commercial cartons can be minimised by keeping temperatures low, packing plant material dry, use of cartons with strategically placed ventilation holes and/or pretreatment with silver thiosulfate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of conditioning and hot water treatments on immature and mature 'Kensington' mangoes were examined. A hot water treatment of 47 degreesC fruit core temperature held for 15 min increased weight loss (50%), fruit softness (15%), disrupted starch hydrolysis and interacted with maturity to reduce the skin yellowness (40-51%) of early harvested fruit. Immature fruit were more susceptible to hot water treatment-induced skin scalding, starch layer and starch spot injuries and disease. Conditioning fruit at 40 degreesC for up to 16 h before hot water treatment accelerated fruit ripening, as reflected in higher total soluble solids and lower titratable acidity levels. As fruit maturity increased, the tolerance to hot water treatment-induced skin scalding and the retention of starch layers and starch spots increased and susceptibility to lenticel spotting decreased. A conditioning treatment of either 22 degrees or 40 degreesC before hot water treatment could prevent the appearance of cavities at all maturity levels. The 40 degreesC conditioning temperature was found to be more effective in increasing fruit heat tolerance than the 22 degreesC treatment; the longer the time of conditioning at 40 degreesC, the more effective the treatment (16 v. 4 h). For maximum fruit quality, particularly for export markets, it is recommended that mature fruit are selected and conditioned before hot water treatment to reduce the risk of heat damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given the necessity of developing jatropha cultivation equipment, this work adjusted different mathematical models to experimental data obtained from the drying of jatropha seeds submitted to different drying conditions and selected the best model to describe the drying process. The experiment was carried out at the Federal Institute of Goiás - Rio Verde Campus. Seeds with initial moisture content of approximately 0.50 (kg water/kg dry matter) were dried in a forced air-ventilated oven, at temperatures of 45, 60, 75, 90 and 105°C to moisture content of 0.10 ± 0.005 (kg water/kg dry matter). The experimental data were adjusted to 11 mathematical models to represent the drying process of agricultural products. The models were compared using the coefficient of determination, chi-square test, relative mean error, estimated mean error and residual distribution. It was found that the increase in the air temperature caused a reduction in the drying time of seeds. The models Midilli and Two Terms were suitable to represent the drying process of Jatropha seeds and between them the use of the Midili model is recommended due to its greater simplicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was carried out to study the physical properties of the jatropha beans over the drying under six air conditions, based on measurements of roundness, sphericity, volume, superficial area, projected area and surface/volume ratio. Jatropha beans with moisture content around 0.61 (decimal d.b.) were subjected to thin-layer drying in oven with forced-air circulation under six temperature conditions (36, 45, 60, 75, 90 and 105 °C) and relative humidity of 31.7; 19.6; 9.4; 4.8; 2.6 and 1.5% respectively, until reaching the moisture content of 0.11 ± 0.006 (decimal d. b.). The results showed that the necessary time for jatropha beans to reach the moisture content of 0.11 ± 0.006 (decimal d.b.) were 1.5; 2.25; 3.0; 4.75; 6.75 and 12.0 h for the drying temperatures of 105, 90, 75, 60, 45 and 36 °C, respectively; and the reduction in the moisture content as well as the drying conditions promoted changes in the shape and reduced the size of the jatropha beans.