906 resultados para Force.
Resumo:
Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.
Resumo:
(-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. As verified with recombinant receptors, the cardiostimulant effect of (-)-CGP12177 is mediated through a site at the beta1-adrenoceptor with lower affinity (beta1LAR) compared to the site through which (-)-CGP12177 antagonizes the effects of catecholamines (beta1HAR). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through beta3-adrenoceptors (Skeberdis et al 2008). We therefore investigated whether the effects of (-)-CGP12177 on human atrial trabeculae are antagonized by the beta3-adrenoceptor-selective antagonist L-748,337 (1 microM). (-)-CGP12177 (200 nM) caused a stable increase in force which was significantly reduced by the addition of (-)-bupranolol (1 microM), P = 0.002, (basal 4.45 ± 0.78 mN, IBMX (PDE inhibitor) 5.47 ± 1.01 mN, (-)-CGP12177 9.34 ± 1.33 mN, (-)-bupranolol 5.79 ± 1.08 mN, n = 6) but not affected by the addition of L-748,337 (1 microM), P = 0.12, (basal 4.48 ± 1.32 mN, IBMX 7.15 ± 2.28 mN, (-)-CGP12177 12.51 ± 3.71 mN, L-748,337 10.90 ± 3.49 mN, n = 6). Cumulative concentration-effect curves for (-)-CGP12177 were not shifted to the right by L-748,337 (1 microM). The –logEC50M values of (-)-CGP12177 in the absence and presence of L-748,337 were 7.21±0.09 and 7.41±0.13, respectively (data from 25 trabeculae from 8 patients, P=0.2) The positive inotropic effects of (-)-CGP12177 (IBMX present) were not antagonized by L-748,337 but were blunted by (-)-bupranolol (1 microM). The results rule out an involvement of beta3-adrenoceptors in the positive inotropic effects (-)-CGP12177 in human right atrial myocardium and are consistent with mediation through beta1LAR. Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227
Resumo:
Throughout the developed world demographic trends and their forecast consequences are attracting the attention of governments, academics, think tanks and the popular press alike. Population aging, in particular, is the focus of many and has generated extensive debate. Approaches commonly advocated in the literature include a mix of ‘population', ‘participation’ and ‘productivity’ measures. Immigration and population policy alongside industry reform and related productivity initiatives are also being pursued. Participation, however, remains a key element of the demographic change policy response. Evidence suggests however, that these approaches are unlikely to deliver the necessary labour force volumes. This has prompted a shift in the participation agenda to also include a stronger focus on skilled and experienced older workers. The literature suggests, however, that the current suite of practices are less than effective for the long-term unemployed, previously long-tenured older workers with specialised skills and trade-displaced workers. Adverse health and human capital outcomes often associated with social disadvantage are complicating factors. This reminds of the complexity of the challenge in seeking to deliver social equity to the disadvantaged and suggests a need for an alternative policy architecture. By integrating the three concepts of health capital, human capital and social capital we show how policy has to change if the older age cohorts of jobseekers are to be assisted to remain employable. This review includes an examination of current policy, a consolidation of the literature and original data.
Resumo:
Aging in humans is associated with a loss in neuromuscular function and performance. This is related, in part, to the reduction in muscular strength and power caused by a loss of skeletal muscle mass (sarcopenia) and changes in muscle architecture. Due to these changes, the force-velocity (f-v) relationship of human muscles alters with age. This change has functional implications such as slower walking speeds. Different methods to reverse these changes have been investigated, including traditional resistance training, power training and eccentric (or eccentrically-biased) resistance training. This review will summarise the changes of the f-v relationship with age, the functional implications of these changes and the various methods to reverse or at least partly ameliorate these changes.
Resumo:
This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.
Resumo:
This paper proposes the use of optical flow from a moving robot to provide force feedback to an operator’s joystick to facilitate collision free teleoperation. Optical flow is measured by a pair of wide angle cameras on board the vehicle and used to generate a virtual environmental force that is reflected to the user through the joystick, as well as feeding back into the control of the vehicle. We show that the proposed control is dissipative and prevents the vehicle colliding with the environment as well as providing the operator with a natural feel for the remote environment. Experimental results are provided on the InsectBot holonomic vehicle platform.
Resumo:
This paper proposes the use of optical flow from a moving robot to provide force feedback to an operator's joystick to facilitate collision free teleoperation. Optic flow is measured by wide angle cameras on board the vehicle and used to generate a virtual environmental force that is reflected to the user through the joystick, as well as feeding back into the control of the vehicle. The coupling between optical flow (velocity) and force is modelled as an impedance - in this case an optical impedance. We show that the proposed control is dissipative and prevents the vehicle colliding with the environment as well as providing the operator with a natural feel for the remote environment. The paper focuses on applications to aerial robotics vehicles, however, the ideas apply directly to other force actuated vehicles such as submersibles or space vehicles, and the authors believe the approach has potential for control of terrestrial vehicles and even teleoperation of manipulators. Experimental results are provided for a simulated aerial robot in a virtual environment controlled by a haptic joystick.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, FE simulations to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson’s ratio =0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27m to 0.11m with a von Mises model, and from 0.09m to 0.02m with Drucker-Prager plasticity. We conclude that it is important to include friction in nanoindentation simulations of bone.
Resumo:
BACKGROUND AND PURPOSE It has been proposed that BRL37344, SR58611 and CGP12177 activate b3-adrenoceptors in human atrium to increase contractility and L-type Ca2+ current (ICa-L). b3-adrenoceptor agonists are potentially beneficial for the treatment of a variety of diseases but concomitant cardiostimulation would be potentially harmful. It has also been proposed that (-)-CGP12177 activates the low affinity binding site of the b1-adrenoceptor in human atrium. We therefore used BRL37344, SR58611 and (-)-CGP12177 with selective b-adrenoceptor subtype antagonists to clarify cardiostimulant b-adrenoceptor subtypes in human atrium. EXPERIMENTAL APPROACH Human right atrium was obtained from patients without heart failure undergoing coronary artery bypass or valve surgery. Cardiomyocytes were prepared to test BRL37344, SR58611 and CGP12177 effects on ICa-L. Contractile effects were determined on right atrial trabeculae. KEY RESULTS BRL37344 increased force which was antagonized by blockade of b1- and b2-adrenoceptors but not by blockade of b3-adrenoceptors with b3-adrenoceptor-selective L-748,337 (1 mM). The b3-adrenoceptor agonist SR58611 (1 nM–10 mM) did not affect atrial force. BRL37344 and SR58611 did not increase ICa-L at 37°C, but did at 24°C which was prevented by L-748,337. (-)-CGP12177 increased force and ICa-L at both 24°C and 37°C which was prevented by (-)-bupranolol (1–10 mM), but not L-748,337. CONCLUSIONS AND IMPLICATIONS We conclude that the inotropic responses to BRL37344 are mediated through b1- and b2-adrenoceptors. The inotropic and ICa-L responses to (-)-CGP12177 are mediated through the low affinity site b1L-adrenoceptor of the b1-adrenoceptor. b3-adrenoceptor-mediated increases in ICa-L are restricted to low temperatures. Human atrial b3-adrenoceptors do not change contractility and ICa-L at physiological temperature.
Resumo:
Hydraulic excavators in the mining industry are widely used owing to the large payload capabilities these machines can achieve. However, there are very few optimisation studies for producing efficient hydraulic excavator backets. An efficient bucket can avoid unnecessary weight; greatly influence the payload and optimise the efficiency of hydraulic mining excavators. This paper presents a framework for the development of a scaled hydraulic excavator by examining the geometry and force relationships. A small hydraulic excavator was purchased and fitted with a broom scaled to a factor. Geometric and force relationships of the model were derived to assist computer instrumentation to retrieve necessary variable input for bucket design.
Resumo:
Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary