976 resultados para Food crops


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reuse of wastewater to irrigate food crops is being practiced in many parts of the world and is becoming more commonplace as the competition for, and stresses on, freshwater resources intensify. But there are risks associated with wastewater irrigation, including the possibility of transmission of pathogens causing infectious disease, to both workers in the field and to consumers buying and eating produce irrigated with wastewater. To manage these risks appropriately we need objective and quantitative estimates of them. This is typically achieved through one of two modelling approaches: deterministic or stochastic. Each parameter in a deterministic model is represented by a single value, whereas in stochastic models probability functions are used. Stochastic models are theoretically superior because they account for variability and uncertainty, but they are computationally demanding and not readily accessible to water resource and public health managers. We constructed models to estimate risk of enteric virus infection arising from the consumption of wastewater-irrigated horticultural crops (broccoli, cucumber and lettuce), and compared the resultant levels of risk between the deterministic and stochastic approaches. Several scenarios were tested for each crop, accounting for different concentrations of enteric viruses and different lengths of environmental exposure (i.e. the time between the last irrigation event and harvest, when the viruses are liable to decay or inactivation). In most situations modelled the two approaches yielded similar estimates of risk (within 1 order-of-magnitude). The two methods diverged most markedly, up to around 2 orders-of-magnitude, when there was large uncertainty associated with the estimate of virus concentration and the exposure period was short (1 day). Therefore, in some circumstances deterministic modelling may offer water resource managers a pragmatic alternative to stochastic modelling, but its usefulness as a surrogate will depend upon the level of uncertainty in the model parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of 2,4-D (2,4-dichlorophenoxyacetic acid) and Dicamba (2-methoxy-3,6-dichlorobenzoic acid) residues in sugar cane, rice and corn was performed by a supercritical fluid extraction (SFE) method using CO2/acetone as extraction mix and an SFE apparatus developed in our laboratory. The extracts were cleaned up after extraction by both liquid- liquid partition and a Florisil column. Micellar electrokinetic capillary chromatography (MEKC) coupled with ultraviolet on-column detection was used for the analysis of these pesticides. The detection limits were improved by the preparation of a special detection cell with an increased pathlength that gave detection limits of ca. 0.6 pg for 2,4-D and Dicamba. Our results demonstrated that capillary electrophoresis can be a powerful new analytical tool for pesticide residue analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors assessed the contribution of food irrigated with arsenic-contaminated water to human exposure to arsenic in Bangladesh. An intervention trial was conducted in a village in the Jessore District of Bangladesh, where irrigation water had been field-tested in March 2000 and was found to contain arsenic with concentrations ranging from 100 to 500 mu g/l. In May 2000, a random sample of 63 households was selected from the village, and I eligible person from each household was recruited to the study and randomized to an intervention or control group. The intervention group received food purchased from a village where irrigation water was found to contain 100 mu g/l arsenic. Pre- and postintervention urine samples were collected for urinary arsenic speciation assays. Preintervention, the mean urinary total arsenic concentrations were 139.25 mu g/l and 129.15 mu g/l for the intervention and control groups, respectively. These concentrations did not change significantly following intervention. Arsenic concentrations in samples of selected raw and cooked foods from the low-contamination area did not contain less arsenic than samples from the high-contamination area. Further studies to investigate the arsenic content of food grown in areas with high and low arsenic contamination of irrigation water are recommended.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"It could easily provide the back-drop for a James Bond movie. Deep inside a mountain near the North Pole, down a fortified tunnel, and behind airlocked doors in a vault frozen to -18 degrees Celsius, scientists are squirreling away millions of seed samples. The samples constitute the very foundation of agriculture, the biological diversity needed so the world's major food crops can adapt to the next pest or disease, or to climate change. It's little wonder that the Svalbard Global Seed Vault has captured the public's imagination more than almost any agricultural topic in recent years. Popular press reports about the ‘Doomsday Vault,’ however, typically mask the complexity of the endeavor and, if anything, underestimate its practical utility." Cary Fowler This chapter considers the use of seed banks to address concerns about intellectual property, climate change and food security. It has a number of themes. First of all, it is interested in the use of ‘Big Science’ projects to address pressing global scientific concerns and Millennium Development Goals. Second, it highlights the increasing use of banks as a means of managing both property and intellectual property across a wide range of fields of agriculture and biotechnology. Third, it considers the linkage of intellectual property, access to genetic resources and benefit sharing. There are a variety of positions in this debate. Some see requirements in respect of access to genetic resources and benefit sharing as an inconvenient burden for science and commerce. Others defend access to genetic resources and benefit sharing as meaningful and productive. Those inclined to somewhat more conspiratorial views suggest that access to genetic resources and benefit sharing are a ruse to facilitate biopiracy. This chapter has a number of components. Section I focuses upon the Consultative Group on International Agricultural Research (CGIAR) network – often raised as a model for Climate Innovation Centres. Section II considers the Svalbard Global Seed Vault – the so-called Doomsday Vault. After a consideration of the World Summit on Food Security in 2009, it is concluded in this chapter that any future international agreement on climate change needs to address intellectual property, plant genetic resources and food security.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Consumer risk assessment is a crucial step in the regulatory approval of pesticide use on food crops. Recently, an additional hurdle has been added to the formal consumer risk assessment process with the introduction of short-term intake or exposure assessment and a comparable short-term toxicity reference, the acute reference dose. Exposure to residues during one meal or over one day is important for short-term or acute intake. Exposure in the short term can be substantially higher than average because the consumption of a food on a single occasion can be very large compared with typical long-term or mean consumption and the food may have a much larger residue than average. Furthermore, the residue level in a single unit of a fruit or vegetable may be higher by a factor (defined as the variability factor, which we have shown to be typically ×3 for the 97.5th percentile unit) than the average residue in the lot. Available marketplace data and supervised residue trial data are examined in an investigation of the variability of residues in units of fruit and vegetables. A method is described for estimating the 97.5th percentile value from sets of unit residue data. Variability appears to be generally independent of the pesticide, the crop, crop unit size and the residue level. The deposition of pesticide on the individual unit during application is probably the most significant factor. The diets used in the calculations ideally come from individual and household surveys with enough consumers of each specific food to determine large portion sizes. The diets should distinguish the different forms of a food consumed, eg canned, frozen or fresh, because the residue levels associated with the different forms may be quite different. Dietary intakes may be calculated by a deterministic method or a probabilistic method. In the deterministic method the intake is estimated with the assumptions of large portion consumption of a ‘high residue’ food (high residue in the sense that the pesticide was used at the highest recommended label rate, the crop was harvested at the smallest interval after treatment and the residue in the edible portion was the highest found in any of the supervised trials in line with these use conditions). The deterministic calculation also includes a variability factor for those foods consumed as units (eg apples, carrots) to allow for the elevated residue in some single units which may not be seen in composited samples. In the probabilistic method the distribution of dietary consumption and the distribution of possible residues are combined in repeated probabilistic calculations to yield a distribution of possible residue intakes. Additional information such as percentage commodity treated and combination of residues from multiple commodities may be incorporated into probabilistic calculations. The IUPAC Advisory Committee on Crop Protection Chemistry has made 11 recommendations relating to acute dietary exposure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The trainers manual provides workshop plans and sample slides for trainers wishing to conduct the 'Identification of insects, spiders and mites in vegetable crops' workshop.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A short project to provide input to planning a project aimed at improving food security and rural livelihoods in Zimbabwe.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.