1000 resultados para Fonction de Gerber-Shiu
Resumo:
We introduce an algebraic operator framework to study discounted penalty functions in renewal risk models. For inter-arrival and claim size distributions with rational Laplace transform, the usual integral equation is transformed into a boundary value problem, which is solved by symbolic techniques. The factorization of the differential operator can be lifted to the level of boundary value problems, amounting to iteratively solving first-order problems. This leads to an explicit expression for the Gerber-Shiu function in terms of the penalty function.
Resumo:
Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes.
Resumo:
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.
Resumo:
[spa] En un modelo de Poisson compuesto, definimos una estrategia de reaseguro proporcional de umbral : se aplica un nivel de retención k1 siempre que las reservas sean inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos la ecuación íntegro-diferencial para la función Gerber-Shiu, definida en Gerber-Shiu -1998- en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía individual de los siniestros. Finalmente presentamos algunos resultados numéricos.
Resumo:
[spa] En un modelo de Poisson compuesto, definimos una estrategia de reaseguro proporcional de umbral : se aplica un nivel de retención k1 siempre que las reservas sean inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos la ecuación íntegro-diferencial para la función Gerber-Shiu, definida en Gerber-Shiu -1998- en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía individual de los siniestros. Finalmente presentamos algunos resultados numéricos.
Resumo:
Reinsurance is one of the tools that an insurer can use to mitigate the underwriting risk and then to control its solvency. In this paper, we focus on the proportional reinsurance arrangements and we examine several optimization and decision problems of the insurer with respect to the reinsurance strategy. To this end, we use as decision tools not only the probability of ruin but also the random variable deficit at ruin if ruin occurs. The discounted penalty function (Gerber & Shiu, 1998) is employed to calculate as particular cases the probability of ruin and the moments and the distribution function of the deficit at ruin if ruin occurs.
Resumo:
2000 Mathematics Subject Classification: 60B10, 60G17, 60G51, 62P05.
Resumo:
Rapport de synthèse Cette thèse consiste en trois essais sur les stratégies optimales de dividendes. Chaque essai correspond à un chapitre. Les deux premiers essais ont été écrits en collaboration avec les Professeurs Hans Ulrich Gerber et Elias S. W. Shiu et ils ont été publiés; voir Gerber et al. (2006b) ainsi que Gerber et al. (2008). Le troisième essai a été écrit en collaboration avec le Professeur Hans Ulrich Gerber. Le problème des stratégies optimales de dividendes remonte à de Finetti (1957). Il se pose comme suit: considérant le surplus d'une société, déterminer la stratégie optimale de distribution des dividendes. Le critère utilisé consiste à maximiser la somme des dividendes escomptés versés aux actionnaires jusqu'à la ruine2 de la société. Depuis de Finetti (1957), le problème a pris plusieurs formes et a été résolu pour différents modèles. Dans le modèle classique de théorie de la ruine, le problème a été résolu par Gerber (1969) et plus récemment, en utilisant une autre approche, par Azcue and Muler (2005) ou Schmidli (2008). Dans le modèle classique, il y a un flux continu et constant d'entrées d'argent. Quant aux sorties d'argent, elles sont aléatoires. Elles suivent un processus à sauts, à savoir un processus de Poisson composé. Un exemple qui correspond bien à un tel modèle est la valeur du surplus d'une compagnie d'assurance pour lequel les entrées et les sorties sont respectivement les primes et les sinistres. Le premier graphique de la Figure 1 en illustre un exemple. Dans cette thèse, seules les stratégies de barrière sont considérées, c'est-à-dire quand le surplus dépasse le niveau b de la barrière, l'excédent est distribué aux actionnaires comme dividendes. Le deuxième graphique de la Figure 1 montre le même exemple du surplus quand une barrière de niveau b est introduite, et le troisième graphique de cette figure montre, quand à lui, les dividendes cumulés. Chapitre l: "Maximizing dividends without bankruptcy" Dans ce premier essai, les barrières optimales sont calculées pour différentes distributions du montant des sinistres selon deux critères: I) La barrière optimale est calculée en utilisant le critère usuel qui consiste à maximiser l'espérance des dividendes escomptés jusqu'à la ruine. II) La barrière optimale est calculée en utilisant le second critère qui consiste, quant à lui, à maximiser l'espérance de la différence entre les dividendes escomptés jusqu'à la ruine et le déficit au moment de la ruine. Cet essai est inspiré par Dickson and Waters (2004), dont l'idée est de faire supporter aux actionnaires le déficit au moment de la ruine. Ceci est d'autant plus vrai dans le cas d'une compagnie d'assurance dont la ruine doit être évitée. Dans l'exemple de la Figure 1, le déficit au moment de la ruine est noté R. Des exemples numériques nous permettent de comparer le niveau des barrières optimales dans les situations I et II. Cette idée, d'ajouter une pénalité au moment de la ruine, a été généralisée dans Gerber et al. (2006a). Chapitre 2: "Methods for estimating the optimal dividend barrier and the probability of ruin" Dans ce second essai, du fait qu'en pratique on n'a jamais toute l'information nécessaire sur la distribution du montant des sinistres, on suppose que seuls les premiers moments de cette fonction sont connus. Cet essai développe et examine des méthodes qui permettent d'approximer, dans cette situation, le niveau de la barrière optimale, selon le critère usuel (cas I ci-dessus). Les approximations "de Vylder" et "diffusion" sont expliquées et examinées: Certaines de ces approximations utilisent deux, trois ou quatre des premiers moments. Des exemples numériques nous permettent de comparer les approximations du niveau de la barrière optimale, non seulement avec les valeurs exactes mais également entre elles. Chapitre 3: "Optimal dividends with incomplete information" Dans ce troisième et dernier essai, on s'intéresse à nouveau aux méthodes d'approximation du niveau de la barrière optimale quand seuls les premiers moments de la distribution du montant des sauts sont connus. Cette fois, on considère le modèle dual. Comme pour le modèle classique, dans un sens il y a un flux continu et dans l'autre un processus à sauts. A l'inverse du modèle classique, les gains suivent un processus de Poisson composé et les pertes sont constantes et continues; voir la Figure 2. Un tel modèle conviendrait pour une caisse de pension ou une société qui se spécialise dans les découvertes ou inventions. Ainsi, tant les approximations "de Vylder" et "diffusion" que les nouvelles approximations "gamma" et "gamma process" sont expliquées et analysées. Ces nouvelles approximations semblent donner de meilleurs résultats dans certains cas.