996 resultados para Follicular dynamics
Resumo:
To verify the effects of energy supplementation and fat on follicular dynamics, metabolic profile and the production of oocytes, 15 young heifers (Bos taurus indicus) with an average age of 14 months and with an initial weight of 256.35 kg were assigned to two treatments according to weight and follicular population as evaluated by ultrasonography: in T1 (1.0 × M), animals received 100% of the energy requirements for maintenance; in T2 (1.7 × M), animals received 170% of the energy requirements for maintenance, achieved by the addition of 200 g of Megalac®. After a period of adaptation to the diet, the treatments, blood collection and follicular aspirations were started using a randomized design. The dry matter intake and weight gain were lower in the 1.0 × M group than in the 1.7 × M group. No differences were found in the plasma progesterone concentrations, albumin, glucose, urea or gonadotropin (FSH and LH) levels between the groups. The mean concentrations of cholesterol were higher in the 1.7 × M group. The total number of small (<4 mm) and medium follicles (4-8 mm) was not altered by the treatments, but the number of small follicles increased on days 1 and 2 of the estrous cycle, with higher values found in the 1.7 × M group. The average of the oocytes also increased (9.50±2.1 and 12.5±4.4 for the 1.0 × M and 1.7 × M groups, respectively). The rapid increase in the amount of energy offered in the diet changes the amount of follicles and oocytes available for follicular aspiration (OPU) in young heifers without changing their metabolic profile.
Resumo:
The most common beef cattle raised in Brazil is the Nelore breed (Bos indicus). Information obtained by ultrasonography on follicular growth in Bos taurus cattle has been accumulating rapidly. However, there are few publications to date on follicular development in Bos indicus breeds. The follicular dynamics in Nelore heifers and cows during natural or prostaglandin (PG)-induced estrous cycle were studied. From the detection of estrus onward, all animals were examined daily by ultrasonography for one (n=35) or two (n=10) consecutive estrous cycles. The follicular dynamic in Nelore cattle was characterized by the predominance of 2 follicular waves in the cows (83.3%, n=18, P<0.05) and 3 waves in the heifers (64.7%, n=16, P<0.05). Most of the cattle observed over 2 consecutive estrous cycles presented the same pattern of follicular waves in the first and second cycle, and only 30% showed variation in the number of waves from one cycle to the other. Most of the follicular parameters analyzed were not affected by PG treatment or age but were altered by follicular waves. Consequently, data on cows and heifers were combined according to the number of follicular waves. The ovulatory follicle was larger than the other dominant follicles (P<0.05), and the ovulatory wave was shorter than the preceding waves (P<0.05). The interovulatory interval was longer in animals showing 3 waves than those exhibiting 2 waves (P<0.05). Maximum diameter of the dominant follicle (around 11 mm) and of the corpus luteum (CL, approximately 17 mm) were smatter than those reported for European breeds. In conclusion, the results demonstrate that although the dominant follicle and corpus luteum are smaller than in European breeds, the follicular dynamics in Nelore cattle were similar to those observed in European breeds and were characterized by 2 or 3 follicular waves for cows and heifers, respectively, during the natural or prostaglandin-induced estrous cycle. (C) 1997 by Elsevier B.V.
Resumo:
Ovarian follicular activity was studied by ultrasonography during 17 oestrous cycles in 9 Mangalarga mares during the second half of the ovulatory season. Sixteen oestrous cycles were considered normal and one 3-wave cycle showing a prolonged luteal phase was considered atypical. Daily ultrasonographic examinations were performed and the compiled data on follicular dynamics were studied retrospectively. One major wave of follicular growth was observed in 13 of the 16 normal cycles (81.25%), whereas 2 major waves occurred in 3 cycles (18.75%). The mean (+/- s.d.) days of emergence of the primary wave of follicular development in cycles containing one or 2 waves were Day 6.0 +/- 2.3 and Day 11.0 +/- 1.0, respectively. The secondary wave of follicular development in 2-wave cycles emerged on Day 0.0 +/- 3.6. The day of wave divergence for primary waves of follicular development in cycles which exhibited one or 2 major waves were Day 12.2 +/- 3.5 and Day 17.3 +/- 3.0, respectively. Divergence of secondary waves occurred in only one of the 3 cycles which exhibited 2 major follicular waves (Day 7). The mean (+/- s.d.) maximum diameters of the dominant follicle in the primary wave of oestrous cycles exhibiting one and 2 major waves were 39.0 +/- 3.9 mm and 34.7 +/- 2.5 mm, respectively. The mean (+/- s.d.) maximum diameter of the dominant follicle present in the secondary wave was 34.3 +/- 11.0 mm. The mean (+/- s.d.) lengths of the interovulatory intervals for cycles containing one and 2 major waves were 19.4 +/- 2.2 and 23.3 +/- 2.5 days, respectively. These data indicate that most Mangalarga mares show one major follicular wave during the oestrous cycle but a small percentage of mares show 2 major waves.
Resumo:
The objective of the present study was to characterize ovarian follicular dynamics and hormone concentrations during follicular deviation in the first wave after ovulation in Nelore (Bos indicus) heifers. Ultrasonographic exams were performed and blood samples were collected every 12 h from the day of estrus until 120-144 h after ovulation in seven females. Deviation was defined as the point at which the growth rate of the dominant follicle became greater than the growth rate of the largest subordinate follicle. Deviation occurred approximately 65 h after ovulation. Growth rate of the dominant follicle increased (P < 0.05) after deviation, while growth rate of the subordinate follicle decreased (P < 0.05). Diameter of the dominant follicle did not differ from the subordinate follicle at deviation (approximately 5.4 mm). The dominant follicle (7.6 mm) was larger (P < 0.05) than the subordinate follicle (5.3 mm) 96 h after ovulation or 24 h after deviation. Plasma FSH concentrations did not change significantly during the post-ovulatory period. The first significant increase in mean plasma progesterone concentration occurred on the day of follicular deviation. In conclusion, the interval from ovulation to follicular deviation (2.7 days) was similar to that previously reported in B. taurus females, but follicles were smaller. Diameters of the dominant follicle and subordinate follicle did not differ before deviation and deviation was characterized by an increase in dominant follicle and decrease in subordinate follicle growth rate. Variations in FSH concentrations within 12-h intervals were not involved in follicular deviation in Nelore heifers. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Currently, timed ovulation induction and timed artificial insemination (TAI) can be performed in buffalo using GnRH or estradiol plus progesterone/progestin (P4)-releasing devices and prostaglandin F-2 alpha (PGF(2 alpha)). The control of the emergence of follicular waves and of ovulation at predetermined times, without the need for estrus detection, has facilitated the management and improved the efficiency of AI programs in buffalo during the breeding and nonbreeding season. Multiple ovulations, embryo transfer, ovum collection and in vitro embryo production have been shown to be feasible in buffalo, although low efficiency and limited commercial application of these techniques have been documented as well. These results could be associated with low ovarian follicular pools, high levels of follicular atresia and failures of the oocyte to enter the oviduct after superstimulation of follicular growth. This review discusses a number of key points related to the manipulation of ovarian follicular growth to improve pregnancy rates following TAI and embryo transfer of in vivo- and in vitro-derived embryos in buffalo.
Resumo:
The aim of the present study was to evaluate the effects of the PGF2˛treatment givenat the onset of a synchronization of ovulation protocol using a norgestomet (NORG) earimplant on ovarian follicular dynamics (Experiment 1) and pregnancy per AI (P/AI; Exper-iment 2) in cyclic (CL present) Bos indicus heifers. In Experiment 1, a total of 46 heiferswere presynchronized using two consecutive doses of PGF2˛12 days apart. At first dayof the synchronization protocol the heifers received implants containing 3 mg of NORGand 2 mg of estradiol benzoate (EB). At the same time, heifers were randomly assignedto receive 150 mg of d-cloprostenol (n = 23; PGF2˛) or no additional treatment (n = 23;Control). When the ear implants were removed 8 days later, all heifers received a PGF2˛treatment and 1 mg of EB was given 24 h later. The follicular diameter and interval toovulation were determined by transrectal ultrasonography. No effects of PGF2˛treat-ment on the diameter of the largest follicle present were observed at implant removal(PGF2˛= 9.8 ± 0.4 vs. Control = 10.0 ± 0.3 mm; P = 0.73) or after 24 h (PGF2˛= 11.1 ± 0.4 vs.Control = 11.0 ± 0.4 mm; P = 0.83). No differences in the time of ovulation after ear implantremoval (PGF2˛= 70.8 ± 1.2 vs. Control = 73.3 ± 0.9 h; P = 0.10) or in the ovulation rate(PGF2˛= 87.0 vs. Control = 82.6%; P = 0.64) between treatments were observed. In Experi-ment 2, 280 cyclic heifers were synchronized using the same experimental design describedabove (PGF2˛; n = 143 and Control; n = 137), at random day of the estrous cycle. All heifersreceived 300 IU of equine chorionic gonadotropin (eCG) and 0.5 mg of estradiol cypionate(as ovulatory stimulus) when the NORG ear implants were removed. Timed artificial insem-ination (TAI) was performed 48 h after implant removal and the pregnancy diagnosis wasconducted 30 days later. No effects on the P/AI due to PGF2˛treatment were observed(PGF2˛= 51.7 vs. Control = 57.7%; P = 0.29). In conclusion, PGF2˛treatment at the onset ofNORG-based protocols for the synchronization of ovulation did not alter the ovarian follic-ular responses or the P/AI in cyclic Bos indicus beef heifers synchronized for TAI.
Resumo:
Selection of dominant follicles in cattle is associated with a deviation in growth rate between the dominant and largest subordinate follicle of a wave (diameter deviation). To determine whether acquisition of ovulatory capacity is temporally associated with diameter deviation, cows were challenged with purified LH at known times after a GnRH-induced LH surge (experiment 1) or at known follicular diameters (experiments 2 and 3). A 4-mg dose of LH induced ovulation in all cows when the largest follicle was greater than or equal to 12 mm (16 of 16), in 17% (1 of 6) when it was 11 mm, and no ovulation when it was less than or equal to 10 mm (0 of 19). To determine the effect of LH dose on ovulatory capacity, follicular dynamics were monitored every 12 h, and cows received either 4 or 24 mg of LH when the largest follicle first achieved 10 mm in diameter (experiment 2). The proportion of cows ovulating was greater (P < 0.05) for the 24-mg (9 of 13; 69.2%) compared with the 4-mg (1 of 13; 7.7%) LH dose. To determine the effect of a higher LH dose on follicles near diameter deviation, follicular dynamics were monitored every 8 h, and cows received 40 mg of LH when the largest follicle first achieved 7.0, 8.5, or 10.0 mm (experiment 3). No cows with a follicle of 7 mm (0 of 9) or 8.5 mm (0 of 9) ovulated, compared with 80% (8 of 10) of cows with 10-mm follicles. Thus, follicles acquired ovulatory capacity at about 10 mm, corresponding to about 1 day after the start of follicular deviation, but they required a greater LH dose to induce ovulation compared with larger follicles. We speculate that acquisition of ovulatory capacity may involve an increased expression of LH receptors on granulosa cells of the dominant follicle and that this change may also be important for further growth of the dominant follicle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ultrasound (B-mode) was used to analyze follicular events in 12 trained female owl monkeys (Aotus azarai infulatus). The animals were examined every 48 hours for over 90days to measure and map follicular growth in both ovaries and to measure (using Doppler velocimetry) local hemodynamic changes during the peri-ovulatory stage. There were 44 follicular growth events, each with two or three follicular waves, and a mean ± SEM interval between events of 17 ± 1.13 days. There were various hemodynamic changes during follicular growth; both vascular resistance index and pulsatility index decreased during the time when the follicle diameter peaked. Thus, both B-mode and Doppler ultrasound were useful for monitoring ovarian follicular events in owl monkeys. © 2013 Elsevier Inc.
Resumo:
Follicular estradiol triggers luteolysis in cattle. Therefore, the control of follicle growth and steroidogenesis is expected to modulate luteal function and might be used as an anti-luteolytic strategy to improve embryo survival. Objectives were to evaluate follicular dynamics, plasma concentrations of estradiol and luteal lifespan in Bos indicus and crossbred cows subjected to sequential follicular aspirations. From D13 to D25 of a synchronized cycle (ovulation = D1), Nelore or crossbred, non-pregnant and non-lactating cows were submitted to daily ultrasound-guided aspiration of follicles >6 mm (n = 10) or to sham aspirations (n = 8). Diameter of the largest follicle on the day of luteolysis (7.4 +/- 1.0 vs 9.7 +/- 1.0 mm; mean +/- SEM), number of days in which follicles >6 mm were present (2.3 +/- 0.4 vs 4.6 +/- 0.5 days) and daily mean diameter of the largest follicle between D15 and D19 (6.4 +/- 0.2 vs 8.5 +/- 0.3 mm) were smaller (p <0.01) in the aspirated group compared with the control group, respectively. Aspiration tended to reduce (p< 0.10) plasma estradiol concentrations between D18 and D20 (2.95 +/- 0.54 vs 4.30 +/- 0.55 pg/ml). The luteal lifespan was similar (p > 0.10) between the groups (19.6 +/- 0.4 days), whereas the oestrous cycle was longer (p <0.01) in the aspirated group (31.4 +/- 1.2 vs 21.2 +/- 1.3 days). Hyperechogenic structures were present at the sites of aspiration and were associated with increase in concentration of progesterone between luteolysis and oestrus. It is concluded that follicular aspiration extended the oestrous cycle and decreased the average follicular diameter on the peri-luteolysis period but failed to delay luteolysis.
Resumo:
The aim of this study was to investigate the effects on follicle stimulating hormone (FSH) secretion and dominant follicle (OF) growth, of treatment of Bos indicus heifers with different combinations of intra-vaginal progesterone releasing devices (IPRD), oestradiol benzoate (ODB), PGF(2 alpha), and eCG. Two-year-old Brahman (BN; n=30) and Brahman-cross (BNX; n=34) heifers were randomly allocated to three IPRD-treatments: (i) standard-dose IPRD [CM 1.56 g; 1.56 g progesterone (P-4); n = 17]; (ii) half-dose IPRD (CM 0.78 g; 0.78 g p(4); n=15); (iii) half-dose IPRD + 300 IU eCG at IPRD removal (CM 0.78 g+G; n=14); and, (iv) non-IPRD control (2 x PGF(2 alpha); n=18) 500 mu g cloprostenol on Days -16 and -2. IPRD-treated heifers received 250 mu g PGF(2 alpha) at IPRD insertion (Day 10) and IPRD removal (Day -2) and 1 mg ODB on Day -10 and Day -1. Follicular dynamics were monitored daily by trans-rectal ultrasonography from Day -10 to Day 1. Blood samples for determination of P-4 were collected daily and samples for FSH determination were collected at 12 h intervals from Day -9 to Day -2. A significant surge in concentrations of FSH was observed in the 2 x PGF(2 alpha), treatment 12 h prior and 48 h after follicular wave emergence, but not in the IPRD-treated heifers. Estimated mean concentrations of total plasma P-4 during the 8 days of IPRD insertion was greater (P<0.001) in the CM 1.56 g P-4 treated heifers compared to the CM 0.78 g P-4 treated heifers (18.38 ng/ml compared with 11.09 ng/ml, respectively). A treatment by genotype interaction (P=0.036) was observed in the mean plasma P4 concentration in heifers with no CL during IPRD insertion, whereby BN heifers in the CM 1.56 g treatment had greater plasma P-4 than the BNX heifers on Days-9, -7, -6, -5, and -4. However, there was no genotype effect in the CM 0.78 g +/- G or the 2 x PGF(2 alpha) treatment. Treatment had no effect on the DF growth from either day of wave emergence (P=0.378) or day of IPRD removal (P=0.780) to ovulation. This study demonstrates that FSH secretion in B. indicus heifers treated with a combination of IPRD's and ODB to synchronise ovulation was suppressed during the period of IPRD insertion but no significant effect on growth of the DF was observed. (C) 2013 Elsevier B.V. All rights reserved.