863 resultados para Folding Pathways
Resumo:
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (LeNguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.
Resumo:
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides; poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.
Resumo:
A deep understanding of the proteins folding dynamics can be get quantifying folding landscape by calculating how the number of microscopic configurations (entropy) varies with the energy of the chain, Ω=Ω(E). Because of the incredibly large number of microstates available to a protein, direct enumeration of Ω(E) is not possible on realistic computer simulations. An estimate of Ω(E) can be obtained by use of a combination of statistical mechanics and thermodynamics. By combining different definitions of entropy that are valid for a system whose probability for occupying a state is given by the canonical Boltzmann probability, computers allow the determination of Ω(E). ^ The energy landscapes of two similar, but not identical model proteins were studied. One protein contains no kinetic tracks. Results show a smooth funnel for the folding landscape. That allows the contour determination of the folding funnel. Also it was presented results for the folding landscape for a modified protein with kinetic traps. Final results show that the computational approach is able to distinguish and explore regions of the folding landscape that are due to kinetic traps from the native state folding funnel.^
Resumo:
The mechanism of folding of the small protein barstar in the pre-transition zone at pH 7, 25 degrees C has been characterized using rapid mixing techniques. Earlier studies had established the validity of the three-state U-S reversible arrow U-F reversible arrow N mechanism for folding and unfolding in the presence of guanidine hydrochloride (GdnHCl) at concentrations greater than 2.0 M, where U-S and U-F are the slow-refolding and fast-refolding unfolded forms, respectively, and N is the fully folded form. It is now shown that early intermediates, I-S1 and I-S2 as well as a late native-like intermediate, I-N, are present on the folding pathways of U-S, and an early intermediate I-F1 on the folding pathway of U-F, when bars tar is refolded in concentrations of GdnHCl below 2.0 M. The rates of formation and disappearance of I-N, and the rates of formation of N at three different concentrations of GdnHCl in the pre-transition zone have been measured. The data indicate that in 1.5 M GdnHCl, I-N is not fully populated on the U-S --> I-S1 --> I-N --> N pathway because the rate of its formation is so slow that the U-S reversible arrow U-F reversible arrow N pathway can effectively compete with that pathway. In 1.0 M GdnHCl, the U-S --> I-S1 --> I-N transition is so fast that I-N is fully populated. In 0.6 M GdnHCl, I-N appears not to be fully populated because an alternative folding pathway, U-S --> I-S2 --> N, becomes available for the folding of U-S, in addition to the U-S --> I-S1 --> I-N --> N pathway Measurement of the binding of the hydrophobic dye 1-anilino-8-naphthalenesulphonate (ANS) during folding indicates that ANS binds to two distinct intermediates, I-M1 and I-M2, that form within 2 ms on the U-S --> I-M1 --> I-S1 --> I-N --> N and U-S --> I-M2 --> I-S2 --> N pathways. There is no evidence for the accumulation of intermediates that can bind ANS on the folding pathway of U-F.
Resumo:
Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the alpha+beta class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1M GuHCl), streblin exists in a partially unfolded state with characteristics of amolten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways.
Resumo:
A method for determining the kinetic fate of structured disulfide species (i.e., whether they are preferentially oxidized or reshuffle back to an unstructured disulfide species) is introduced. The method relies on the sensitivity of unstructured disulfide species to low concentrations of reducing agents. Because a structured des species that preferentially reshuffles generally first rearranges to an unstructured species, a small concentration of reduced DTT (e.g., 260 μM) suffices to distinguish on-pathway intermediates from dead-end species. We apply this method to the oxidative folding of bovine pancreatic ribonuclease A (RNase A) and show that des[40–95] and des[65–72] are productive intermediates, whereas des[26–84] and des[58–110] are metastable dead-end species that preferentially reshuffle. The key factor in determining the kinetic fate of these des species is the relative accessibility of both their thiol groups and disulfide bonds. Productive intermediates tend to be disulfide-secure, meaning that their structural fluctuations preferentially expose their thiol groups, while keeping their disulfide bonds buried. By contrast, dead-end species tend to be disulfide-insecure, in that their structural fluctuations expose their disulfide bonds in concert with their thiol groups. This distinction leads to four generic types of oxidative folding pathways. We combine these results with those of earlier studies to suggest a general three-stage model of oxidative folding of RNase A and other single-domain proteins with multiple disulfide bonds.
Resumo:
Elucidating the mechanism of folding of polynucleotides depends on accurate estimates of free energy surfaces and a quantitative description of the kinetics of structure formation. Here, the kinetics of hairpin formation in single-stranded DNA are measured after a laser temperature jump. The kinetics are modeled as configurational diffusion on a free energy surface obtained from a statistical mechanical description of equilibrium melting profiles. The effective diffusion coefficient is found to be strongly temperature-dependent in the nucleation step as a result of formation of misfolded loops that do not lead to subsequent zipping. This simple system exhibits many of the features predicted from theoretical studies of protein folding, including a funnel-like energy surface with many folding pathways, trapping in misfolded conformations, and non-Arrhenius folding rates.
Resumo:
Small, single-module proteins that fold in a single cooperative step may be paradigms for understanding early events in protein-folding pathways generally. Recent experimental studies of the 64-residue chymotrypsin inhibitor 2 (CI2) support a nucleation mechanism for folding, as do some computer stimulations. CI2 has a nucleation site that develops only in the transition state for folding. The nucleus is composed of a set of adjacent residues (an alpha-helix), stabilized by long-range interactions that are formed as the rest of the protein collapses around it. A simple analysis of the optimization of the rate of protein folding predicts that rates are highest when the denatured state has little residual structure under physiological conditions and no intermediates accumulate. This implies that any potential nucleation site that is composed mainly of adjacent residues should be just weakly populated in the denatured state and become structured only in a high-energy intermediate or transition state when it is stabilized by interactions elsewhere in the protein. Hierarchical mechanisms of folding in which stable elements of structure accrete are unfavorable. The nucleation-condensation mechanism of CI2 fulfills the criteria for fast folding. On the other hand, stable intermediates do form in the folding of more complex proteins, and this may be an unavoidable consequence of increasing size and nucleation at more than one site.
Resumo:
Understanding the mechanism by which an unfolded polypeptide chain folds to its unique, functional structure is a primary unsolved problem in biochemistry. Fundamental advances towards understanding how proteins fold have come from kinetic studies, Kinetic studies allow the dissection of the folding pathway of a protein into individual steps that are defined by partially-structured folding intermediates. Improvements in both the structural and temporal resolution of physical methods that are used to monitor the folding process, as well as the development of new methodologies, are now making it possible to obtain detailed structural information on protein folding pathways. The protein engineering methodology has been particularly useful in characterizing the structures of folding intermediates as well as the transition state of folding, Several characteristics of protein folding pathways have begun to emerge as general features for the folding of many different proteins. Progress in our understanding of how structure develops during folding is reviewed here.
Resumo:
Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.
Resumo:
We review the current status of various aspects of biopolymer translocation through nanopores and the challenges and opportunities it offers. Much of the interest generated by nanopores arises from their potential application to third-generation cheap and fast genome sequencing. Although the ultimate goal of single-nucleotide identification has not yet been reached, great advances have been made both from a fundamental and an applied point of view, particularly in controlling the translocation time, fabricating various kinds of synthetic pores or genetically engineering protein nanopores with tailored properties, and in devising methods (used separately or in combination) aimed at discriminating nucleotides based either on ionic or transverse electron currents, optical readout signatures, or on the capabilities of the cellular machinery. Recently, exciting new applications have emerged, for the detection of specific proteins and toxins (stochastic biosensors), and for the study of protein folding pathways and binding constants of protein-protein and protein-DNA complexes. The combined use of nanopores and advanced micromanipulation techniques involving optical/magnetic tweezers with high spatial resolution offers unique opportunities for improving the basic understanding of the physical behavior of biomolecules in confined geometries, with implications for the control of crucial biological processes such as protein import and protein denaturation. We highlight the key works in these areas along with future prospects. Finally, we review theoretical and simulation studies aimed at improving fundamental understanding of the complex microscopic mechanisms involved in the translocation process. Such understanding is a pre-requisite to fruitful application of nanopore technology in high-throughput devices for molecular biomedical diagnostics.
Resumo:
The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a ``spatial motif'' and several ``fold specific hot spots'' that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest.
Resumo:
Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.
Resumo:
Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus IBV. It was thought that coronavirus virions were composed of three major viral structural proteins, until investigations of other coronaviruses showed that coronavirus virions also include viral non-structural and group specific proteins as well as host cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs and purified by sucrose gradient ultracentrifugation and analysed by mass spectrometry proteomic. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus thirty-five additional virion-associated host proteins. Virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, whilst others were found to be orthologous to proteins identified in SARS-CoV virions, and also virions from a number of other RNA and DNA viruses. Together these results demonstrate that coronaviruses have the capacity to incorporate a substantial variety of host protein, which may have implications for the disease process.
Resumo:
Zusammenfassungrn Der Faltungsprozess des Hauptlichtsammelkomplexes des Photosystems II aus höheren Pflanzen (light harvesting complex II, LHCII) wurde bereits mehrfach untersucht, die Experimente hierzu fanden stets im Ensemble statt. Anhand der bislang veröffentlichten Faltungskinetiken des LHCII aus höheren Pflanzen lassen sich aber keine eindeutigen Aussagen bezüglich der Diversität der Faltungswege treffen. Daher sollten im Rahmen dieser Arbeit Faltungskinetiken einzelner LHCII-Moleküle während der Komplexbildung aufgenommen werden, um weitergehende Informationen zum Faltungsmechanismus zu erhalten und zur Frage, ob hier mehrere unterschiedliche Wege eingeschlagen werden.rnHierfür war zunächst die Etablierung einer Oberflächenimmobilisierung mit Glas als Trägermaterial notwendig. Nachdem Versuche, diese Immobilisierung über einen His6-tag oder über einen heterobifunktionellen Linker zu bewerkstelligen, nicht zum Erfolg geführt haben, konnte eine Immobilisierung des Biotin-markierten Proteins an Oberflächen-gebundenes Avidin erreicht werden. Die Qualität dieser Immobilisierung wurde hierbei sowohl über Bindungsversuche mit fluoreszenzfarbstoffmarkiertem Protein als auch über eine direkte Kontrolle der Oberflächenbeschaffenheit mittels Rasterkraftmikroskopie überprüft. Die für die folgenden Versuche optimale Belegungsdichte wurde im konfokalen Fluoreszenzmikroskop ermittelt. Zudem wurde sichergestellt, dass die Proteine vereinzelt auf der Oberfläche immobilisiert vorliegen.rnAuf dieser Basis wurden LHCII-Komplexe, die zuvor in vitro rekonstituiert wurden, immobilisiert und Versuche zur kontrollierten Denaturierung unternommen, um Zerfalls-kinetiken im Verfahren der internen Totalreflexionsfluoreszenzmikroskopie (total internal reflection fluorescence, TIRF) aufnehmen zu können. Hierbei traten Schwierigkeiten bezüglich der Lebensdauer der Komplexe unter Laser-Belichtung auf, da sich die Löschung der Fluoreszenz durch Zerstrahlung der Pigmente einerseits oder Dissoziation der LHCII andererseits nicht unterscheiden ließen. Auch durch verschiedene Maßnahmen zur Erhöhung der Lebensdauer konnte diese nicht in dem Maße gesteigert werden, wie es experimentell notwendig gewesen wäre.rnFür das eigentliche Hauptziel dieser Arbeit – die Aufzeichnung von Einzelmolekül-Faltungskinetiken – war die Entwicklung einer Methode zur Rekonstitution oberflächen-immobilisierter LHCII-Apoproteine notwendig. Dieses Ziel wurde mithilfe einer Detergenzmisch-Rekonstitution erreicht. Der Erfolg der Rekonstitution konnte experimentell sowohl im Fluorimeter anhand des komplexinternen Energietransfers auf einen kovalent an das Protein gebundenen Infrarot-Fluorophor als auch im TIRF-Verfahren direkt beobachtet werden. Auch hier konnte nach ca. 80 Sekunden ein Ausbleichen der Komplexe während der Belichtung durch den Anregungs-Laser beobachtet werden.rnIn Versuchen zur Beobachtung des Komplexbildungsvorganges zeigte sich, dass die Rekonstitution offenbar durch die Belichtung massiv gestört wird. Ein weiteres Problem war eine sehr starke Hintergrundfluoreszenz, ausgelöst durch die zur Rekonstitution notwendige Pigmentlösung, die trotz der TIRF-Anregung von ausschließlich oberflächengebundenem Material die Fluoreszenz der Komplexe überlagerte. Somit konnte die Rekonstitution oberflächenimmobilisierter LHCII-Proteine zwar in Vorher-Nachher-Aufnahmen gezeigt werden, der Faltungsprozess an sich konnte dagegen im Rahmen dieser Arbeit nicht aufgezeichnet werden.