35 resultados para Foguetes aereos


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A launching rocket and its payload are submitted to strong acoustic loads in some moments of its flight like lift off, during transonic flight and in the instant of maximum dynamic pressure. These loads could affect the payload and other rocket internal equipment. It must be taken into account that in the higher stages, where delicate control equipment and the payload are placed, the acoustic excitations are dominant. The knowledge of the acoustic loads is of great importance in order to provide estimated loads for the design phase, define intensity level to specify qualification and acceptation acoustic tests to which subsystems and elements of the launcher and its payload shall be submitted and to design an acoustic … (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, Mestrado Nacional Profissional em Ensino de Física, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, Mestrado Nacional Profissional em Ensino de Física, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, Mestrado Nacional Profissional em Ensino de Física, 2015.