986 resultados para Foam cell
Resumo:
CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.
Resumo:
The effect of lycopene on macrophage foam cell formation induced by modified low-density lipoprotein (LDL) was studied. Human monocyte-derived macrophages (HMDM) were incubated with lycopene in the presence or absence of native LDL (nLDL) or LDL modified by oxidation (oxLDL), aggregation (aggLDL), or acetylation (acLDL). The cholesterol content, lipid synthesis, scavenger receptor activity, and the secretion of inflammatory [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and anti-inflammatory (IL-10) cytokines was determined. Lycopene was found to decrease the synthesis of cholesterol ester in incubations without LDL or with oxLDL while triacylglycerol synthesis was reduced in the presence of oxLDL and aggLDL. Scavenger receptor activity as assessed by the uptake of acLDL was decreased by ∼30% by lycopene. In addition, lycopene inhibited IL-10 secretion by up to 74% regardless of the presence of nLDL or aggLDL but did not affect IL-1β or TNF-α release. Lycopene also reduced the relative abundance of mRNA transcripts for scavenger receptor A (SR-A) in THP-1 macrophages treated with aggLDL. These findings suggest that lycopene may reduce macrophage foam cell formation induced by modified LDL by decreasing lipid synthesis and downregulating the activity and expression of SR-A. However, these effects are accompanied by impaired secretion of the anti-inflammatory cytokine IL-10, suggesting that lycopene may also exert a concomitant proinflammatory effect.
Resumo:
The accumulation of foam cells in the artery wall causes fatty streaks, the first lesions in atherosclerosis. LDL (low-density lipoprotein) plays a major role in foam cell formation, although prior oxidation of the particles is required. Recent studies, however, have provided considerable evidence to indicate that CMRs (chylomicron remnants), which carry dietary lipids in the blood, induce foam cell formation without oxidation. We have shown that CMRs are taken up by macrophages and induce accumulation of both triacylglycerol and cholesterol, and that the rate of uptake and amount of lipid accumulated is influenced by the type of dietary fat in the particles. Furthermore, oxidation of CMRs, in striking contrast with LDL, inhibits, rather than enhances, their uptake and induction of lipid accumulation. In addition, the lipid accumulated after exposure of macrophages to CMRs is resistant to efflux, and this may be due to its sequestration in lysosomes. These findings demonstrate that CMRs induce pro-atherogenic changes in macrophages, and that their effects may be modulated by dietary factors including oxidized fats, lipophilic antioxidants and the type of fat present.
Resumo:
High circulating levels of triglyceride-rich lipoproteins (TGRL) represent an independent risk factor for coronary artery disease. Here, we show that TGRL inhibit the efflux of cholesterol from 'foam cell' macrophages to lipid-poor apolipoprotein (apo) A1, and may thereby inhibit arterial reverse cholesterol transport and promote the formation of atherosclerotic lesions. Human (THP-1) monocyte-derived macrophages were pre-incubated (48h) with acetylated low-density lipoprotein (AcLDL) to provide a foam cell model of cholesterol efflux to apoA1. Pre-incubation of macrophage 'foam cells' with TGRL (0-200 mug/ml, 0-24 h) inhibited the efflux of exogenously radiolabelled ([H-3]), endogenously synthesised ([C-14]) and cellular cholesterol mass to lipid-poor apoA1, but not control medium, during a (subsequent) efflux period. This inhibition is dependent upon the length of prior exposure to, and concentration of, TGRL employed, but is independent of changes in intracellular triglyceride accumulation or turnover of the cholesteryl ester pool. Despite the negative impact of TGRL on cholesterol efflux, major proteins involved in this process-namely apoE, ABCA1, SR-B1 and caveolin-1-were unaffected by TGRL pre-incubation, suggesting that exposure to these lipoproteins inhibits an alternate, and possibly novel, anti-atherogenic pathway. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Immunohistochemical studies on renal biopsies from eight patients with various types of glomerulonephritis showed that the interstitial foam cells belonged to the monocyte-macrophage lineage. There was a strong association between hypercholesterolaemia and the presence of renal interstitial foam cells.
Resumo:
Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas.
Resumo:
We have previously identified a 94- to 97-kDa oxidized low density lipoprotein (LDL)-binding protein in mouse macrophages as macrosialin (MS), a member of the lamp family. Earlier immunostaining studies have shown that MS and its human homolog, CD68, are predominantly intracellular proteins. However, using sensitive techniques such as flow cytometry (FACS) and cell-surface-specific biotinylation, we now show that there is significant surface expression of these proteins. FACS analysis of intact cells using mAb FA/11 showed small but definite surface expression of MS in resident mouse peritoneal macrophages but this was greatly enhanced with thioglycollate elicitation. Biotinylation of intact cells and detergent-solubilized cell preparations followed by immunoprecipitation revealed 10–15% of the total MS content of elicited macrophages on the plasma membrane. Similar results were obtained with untreated RAW 264.7 cells. FACS analysis of intact THP-1 monocytic cells showed minimal surface expression of CD68 on unactivated cells (4% of total cell content). Stimulation with phorbol 12-myristate 13-acetate increased both surface and total CD68 expression considerably. Furthermore, the specific binding at 4°C and uptake at 37°C of 125I-labeled oxidized LDL by activated THP-1 cells was inhibited by 30–50% by CD68 mAbs KP-1 and EBM-11. Thus, although the surface expression of MS/CD68 at steady-state represents only a small percentage of their total cellular content, these proteins can play a significant role in oxidized LDL uptake by activated macrophages in vitro and could contribute to foam cell formation in atherosclerotic lesions.
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids and fibrous connective tissue in the arterial wall. Recently, it has been suggested that decrease in the pH of extracellular fluid of the arterial intima may enhance LDL accumulation by increasing binding of the LDL to matrix proteoglycans and also by making the plaque more favorable for acidic enzymes to be active. Many lysosomal acidic enzymes have been found in atherosclerotic plaques. In this thesis, we were able to induce secretion of lysosomal acidic cathepsin F from human monocyte-derived macrophages by stimulation with angiotensin II. We also showed that LDL pre-proteolyzed with cathepsin S was more prone to subsequent hydrolytic modifications by lipases. Especially acidic secretory sphingomyelinase was able to hydrolyze pre-proteolyzed LDL even at neutral pH. We also showed that the proteolyzed and lipolyzed LDL particles were able to bind more efficiently to human aortic proteoglycans. In addition, the role of extracellular acidic pH on the ability of macrophages to internalize LDL was studied. At acidic pH, the production of cell surface proteoglycans in macrophages was increased as well as the binding of native and modified LDL to cell surface proteoglycans. Furthermore, macrophages cultured at acidic pH showed increased internalization of modified and native LDL leading to foam cell formation. This thesis revealed various mechanisms by which acidic pH can increase LDL retention and accumulation in the arterial intima and has the potential to increase the progression of atherosclerosis.
Resumo:
The association of very-low-density lipoprotein (VLDL) with atherosclerosis remains controversial. However, studies have shown that oxidative modification of VLDL can promote foam cell formation, leading to the development of atherosclerosis. A rapid method is described which will allow the significance of VLDL oxidation to be assessed in clinical studies. VLDL was isolated from heparinized plasma by a 1-h, single spin ultracentrifugation. Total protein was standardized to 25 mg/L. Oxidation was promoted by the addition of copper ions (17.5 mu mol/L, final concentration) incubated at 37 degrees C. Conjugated diene production was followed at 234 nm. Total assay preparation time was 2 h. Urate greatly inhibited the oxidation of VLDL and was successfully removed by size exclusion chromatography. VLDL isolated from frozen plasma (-70 degrees C) was stable for 15 weeks. This simple, rapid method for the isolation of VLDL may be applied to assess the significance of VLDL oxidation in disease.
Resumo:
Oxidation of VLDL in vitro increases macrophage uptake and promotes foam cell formation, and the dyslipidaemia of chronic renal failure is characterised by an increase in VLDL. However, little information is available with regard to the susceptibility of VLDL to oxidation in patients at increased risk of atherosclerosis. We have therefore assessed the composition and susceptibility to oxidation of VLDL from haemodialysis patients anti control subjects. VLDL from haemodialysis patients contained increased lipid hydroperoxides (81.6 +/- 12.6 versus 16.1 +/- 3.4 nmol/mg protein, P
Resumo:
Berries are a good source of polyphenols, especially anthocyanins, micronutrients, and fiber. In epidemiological and clinical studies, these constituents have been associated with improved cardiovascular risk profiles. Human intervention studies using chokeberries, cranberries, blueberries, and strawberries (either fresh, or as juice, or freeze-dried), or purified anthocyanin extracts have demonstrated significant improvements in LDL oxidation, lipid peroxidation, total plasma antioxidant capacity, dyslipidemia, and glucose metabolism. Benefits were seen in healthy subjects and in those with existing metabolic risk factors. Underlying mechanisms for these beneficial effects are believed to include upregulation of endothelial nitric oxide synthase, decreased activities of carbohydrate digestive enzymes, decreased oxidative stress, and inhibition of inflammatory gene expression and foam cell formation. Though limited, these data support the recommendation of berries as an essential fruit group in a heart-healthy diet.
Resumo:
Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the atherogenic potential of certain plasma constituents, including low-density lipoprotein (LDL). Glycation of LDL is significantly increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls; enhanced uptake of LDL by macrophages, thus stimulating foam cell formation; increased platelet aggregation; formation of LDL-immune complexes; and generation of oxygen free radicals, resulting in oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterized by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation," occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long-lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age: in diabetes, their rate of accumulation is accelerated. Inhibition of glycation, oxidation, and glycoxidation may form the basis of future antiatherogenic strategies in both diabetic and nondiabetic individuals.
Resumo:
In people with diabetes, glycation of apolipoproteins correlates with other indices of recent glycemic control, including HbA1. For several reasons, increased glycation of apolipoproteins may play a role in the accelerated development of atherosclerosis in diabetic patients. Recognition of glycated LDL by the classical LDL receptor is impaired, whereas its uptake by human monocyte-macrophages is enhanced. These alterations may contribute to hyperlipidemia and accelerated foam-cell formation, respectively. Glycation of LDL also enhances its capacity to stimulate platelet aggregation. The uptake of VLDL from diabetic patients by human monocyte-macrophages is enhanced. This enhancement may be due, at least in part, to increased glycation of its lipoproteins. Glycation of HDL impairs its recognition by cells and reduces its effectiveness in reverse cholesterol transport. Glycation of apolipoproteins may also generate free radicals, increasing oxidative damage to the apolipoproteins themselves, the lipids in the particle core, and any neighboring macromolecules. This effect may be most significant in extravasated lipoproteins. In these, increased glycation promotes covalent binding to vascular structural proteins, and oxidative reactions may cause direct damage to the vessel wall. Glycoxidation, or browning, of sequestered lipoproteins may further enhance their atherogenicity. Finally, glycated or glycoxidized lipoproteins may be immunogenic, and lipoprotein-immune complexes are potent stimulators of foam-cell formation.