967 resultados para Flux variability analysis
Analysis of metabolic flux distributions in relation to the extracellular environment in Avian cells
Resumo:
Continuous cell lines that proliferate in chemically defined and simple media have been highly regarded as suitable alternatives for vaccine production. One such cell line is the AG1.CR.pIX avian cell line developed by PROBIOGEN. This cell line can be cultivated in a fully scalable suspension culture and adapted to grow in chemically defined, calf serum free, medium [1]–[5]. The medium composition and cultivation strategy are important factors for reaching high virus titers. In this project, a series of computational methods was used to simulate the cell’s response to different environments. The study is based on the metabolic model of the central metabolism proposed in [1]. In a first step, Metabolic Flux Analysis (MFA) was used along with measured uptake and secretion fluxes to estimate intracellular flux values. The network and data were found to be consistent. In a second step, Flux Balance Analysis (FBA) was performed to access the cell’s biological objective. The objective that resulted in the best predicted results fit to the experimental data was the minimization of oxidative phosphorylation. Employing this objective, in the next step Flux Variability Analysis (FVA) was used to characterize the flux solution space. Furthermore, various scenarios, where a reaction deletion (elimination of the compound from the media) was simulated, were performed and the flux solution space for each scenario was calculated. Growth restrictions caused by essential and non-essential amino acids were accurately predicted. Fluxes related to the essential amino acids uptake and catabolism, the lipid synthesis and ATP production via TCA were found to be essential to exponential growth. Finally, the data gathered during the previous steps were analyzed using principal component analysis (PCA), in order to assess potential changes in the physiological state of the cell. Three metabolic states were found, which correspond to zero, partial and maximum biomass growth rate. Elimination of non-essential amino acids or pyruvate from the media showed no impact on the cell’s assumed normal metabolic state.
Resumo:
Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.
Resumo:
The patterns of genetic variation of samples of Candida spp. isolated from patients infected with human immunodeficiency virus in Vitória, state of Espírito Santo, Brazil, were examined. Thirty-seven strains were isolated from different anatomical sites obtained from different infection episodes of 11 patients infected with the human immunodeficiency virus (HIV). These samples were subjected to randomly amplified polymorphic DNA (RAPD) analysis using 9 different primers. Reproducible and complex DNA banding patterns were obtained. The experiments indicated evidence of dynamic process of yeast colonization in HIV-infected patients, and also that certain primers are efficient in the identification of species of the Candida genus. Thus, we conclude that RAPD analysis may be useful in providing genotypic characters for Candida species typing in epidemiological investigations, and also for the rapid identification of pathogenic fungi.
Resumo:
This study investigated changes in heart rate variability (HRV) in elite Nordic-skiers to characterize different types of "fatigue" in 27 men and 30 women surveyed from 2004 to 2008. R-R intervals were recorded at rest during 8 min supine (SU) followed by 7 min standing (ST). HRV parameters analysed were powers of low (LF), high (HF) frequencies, (LF+HF) (ms(2)) and heart rate (HR, bpm). In the 1 063 HRV tests performed, 172 corresponded to a "fatigue" state and the first were considered for analysis. 4 types of "fatigue" (F) were identified: 1. F(HF(-)LF(-))SU_ST for 42 tests: decrease in LFSU (- 46%), HFSU (- 70%), LFST (- 43%), HFST (- 53%) and increase in HRSU (+ 15%), HRST (+ 14%). 2. F(LF(+) SULF(-) ST) for 8 tests: increase in LFSU (+ 190%) decrease in LFST (- 84%) and increase in HRST (+ 21%). 3. F(HF(-) SUHF(+) ST) for 6 tests: decrease in HFSU (- 72%) and increase in HFST (+ 501%). 4. F(HF(+) SU) for only 1 test with an increase in HFSU (+ 2161%) and decrease in HRSU (- 15%). Supine and standing HRV patterns were independently modified by "fatigue". 4 "fatigue"-shifted HRV patterns were statistically sorted according to differently paired changes in the 2 postures. This characterization might be useful for further understanding autonomic rearrangements in different "fatigue" conditions.
Resumo:
Background: The autonomic dysfunction stands out among the complications associated to diabetes mellitus (DM) and may be evaluated through the heart rate variability (HRV), a noninvasive tool to investigate the autonomic nervous system that provides information of health impairments and may be analyzed by using linear and nonlinear methods. Several studies have shown that HRV measured in a linear form is altered in DM. Nevertheless, a few studies investigate the nonlinear behavior of HRV. Therefore, this study aims at gathering information regarding the autonomic changes in subjects with DM identified by nonlinear analysis of HRV.Methods: For that, searches were performed on Medline, SciELO, Lilacs and Cochrane databases using the crossing between the key-words: diabetic autonomic neuropathy, autonomic nervous system, diabetes mellitus and heart rate variability. As inclusion criteria, articles published on a period from 2000 to 2010 with DM type land type II population which assessed the autonomic nervous system by nonlinear indices HRV were considered.Results: The electronic search resulted in a total of 1873 references with the exclusion of 1623 titles and abstracts and from the 250 abstracts remaining, 8 studies were selected to the final analysis that completed the inclusion criteria.Conclusions: In general, the analysis showed that the nonlinear techniques of HRV allowed detecting autonomic changes in DM. The methods of nonlinear analysis are indicated as a possible tool to be used for early diagnosis and prognosis of autonomic dysfunction in DM.
Resumo:
The patterns of genetic variation of samples of Candida spp. isolated from patients infected with human immunodeficiency virus in Vitória, state of Espírito Santo, Brazil, were examined. Thirty-seven strains were isolated from different anatomical sites obtained from different infection episodes of 11 patients infected with the human immunodeficiency virus (HIV). These samples were subjected to randomly amplified polymorphic DNA (RAPD) analysis using 9 different primers. Reproducible and complex DNA banding patterns were obtained. The experiments indicated evidence of dynamic process of yeast colonization in HIV-infected patients, and also that certain primers are efficient in the identification of species of the Candida genus. Thus, we conclude that RAPD analysis may be useful in providing genotypic characters for Candida species typing in epidemiological investigations, and also for the rapid identification of pathogenic fungi.
Resumo:
The effect of snoring on the cardiovascular system is not well-known. In this study we analyzed the Heart Rate Variability (HRV) differences between light and heavy snorers. The experiments are done on the full-whole-night polysomnography (PSG) with ECG and audio channels from patient group (heavy snorer) and control group (light snorer), which are gender- and age-paired, totally 30 subjects. A feature Snoring Density (SND) of audio signal as classification criterion and HRV features are computed. Mann-Whitney statistical test and Support Vector Machine (SVM) classification are done to see the correlation. The result of this study shows that snoring has close impact on the HRV features. This result can provide a deeper insight into the physiological understand of snoring. © 2011 CCAL.
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
Cardiotocography (CTG) is a widespread foetal diagnostic methods. However, it lacks of objectivity and reproducibility since its dependence on observer's expertise. To overcome these limitations, more objective methods for CTG interpretation have been proposed. In particular, many developed techniques aim to assess the foetal heart rate variability (FHRV). Among them, some methodologies from nonlinear systems theory have been applied to the study of FHRV. All the techniques have proved to be helpful in specific cases. Nevertheless, none of them is more reliable than the others. Therefore, an in-depth study is necessary. The aim of this work is to deepen the FHRV analysis through the Symbolic Dynamics Analysis (SDA), a nonlinear technique already successfully employed for HRV analysis. Thanks to its simplicity of interpretation, it could be a useful tool for clinicians. We performed a literature study involving about 200 references on HRV and FHRV analysis; approximately 100 works were focused on non-linear techniques. Then, in order to compare linear and non-linear methods, we carried out a multiparametric study. 580 antepartum recordings of healthy fetuses were examined. Signals were processed using an updated software for CTG analysis and a new developed software for generating simulated CTG traces. Finally, statistical tests and regression analyses were carried out for estimating relationships among extracted indexes and other clinical information. Results confirm that none of the employed techniques is more reliable than the others. Moreover, in agreement with the literature, each analysis should take into account two relevant parameters, the foetal status and the week of gestation. Regarding the SDA, results show its promising capabilities in FHRV analysis. It allows recognizing foetal status, gestation week and global variability of FHR signals, even better than other methods. Nevertheless, further studies, which should involve even pathological cases, are necessary to establish its reliability.
Resumo:
In rapidly evolving domains such as Computer Assisted Orthopaedic Surgery (CAOS) emphasis is often put first on innovation and new functionality, rather than in developing the common infrastructure needed to support integration and reuse of these innovations. In fact, developing such an infrastructure is often considered to be a high-risk venture given the volatility of such a domain. We present CompAS, a method that exploits the very evolution of innovations in the domain to carry out the necessary quantitative and qualitative commonality and variability analysis, especially in the case of scarce system documentation. We show how our technique applies to the CAOS domain by using conference proceedings as a key source of information about the evolution of features in CAOS systems over a period of several years. We detect and classify evolution patterns to determine functional commonality and variability. We also identify non-functional requirements to help capture domain variability. We have validated our approach by evaluating the degree to which representative test systems can be covered by the common and variable features produced by our analysis.
Resumo:
Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied.The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.