1000 resultados para Flush solution
Resumo:
水力结构就是植物在特定的自然环境条件下,为适应生存竞争的需要所形成的不同形态结构和水分运输供给策略,它对于植物物种的分布、抗逆能力等方面起关键性作用。喀斯特常绿阔叶林生长的特有植物种类以其独特的形态解剖特征和生理适应性,很好的适应了喀斯特地区独特的水分和土壤环境,以维持自身的生存和最适生长。植物的水分关系是喀斯特地区特有植物种类适应环境的核心生理生态学问题之一。贵州喀斯特地区石漠化正日益加剧,因此,对贵州植物水力结构和环境适应性进行研究具有重要的意义。 目前,国内外学者在“冲洗法”中使用的不同冲洗溶质可能对植物木质部水力结构的测定结果等产生较大影响,因此本文首先研究了三种溶质的冲洗溶液对毛白杨(Populus tomentosa)和油松(Pinus tabulaeformis)枝条的水力导度和抵抗空穴化能力的影响。实验结果表明: 相对于去离子水,用0.01 M 的草酸和0.03 M KCl溶液作为冲洗溶液,均导致毛白杨木质部导管和油松管胞的水力导度测定值的增大。KCl导致毛白杨和油松木质部抵抗空穴化能力的测定值提高,草酸导致杨树抵抗空穴化能力测定值增强但导致油松抗空穴化能力测定值显著(P<0.01)减弱。小枝水平上,毛白杨和油松的水分运输效率和抗空穴化能力之间没有显著相关性。另外,在截枝实验中发现毛白杨小枝木质部水力导度随长度增加变化不大,而油松枝条的木质部水力导度有逐渐增大的趋势。以上的实验结果表明不同溶质下毛白杨和油松枝条的木质部水力导度和抵抗空穴化能力不同,草酸和KCl可能对木质部管道系统及纹孔处的果胶等产生作用,从而使毛白杨和油松的水力结构发生变化。毛白杨与油松水力结构在去离子水、草酸和KCl的作用下的不同结果及两物种截枝试验下水力导度的不同变化趋势,表明导管运输系统和管胞运输系统可能具有不同的水分运输影响因素。 在贵州花江、普定、荔波等地选择当地森林中39种优势木本植物作为研究对象,对其枝条的水力结构进行研究,结果表明: 该地区优势木本植物的水力结构与其他森林类型相比,其木质部抗栓塞化能力介于热带雨林和热带干热森林之间,而水力导度高于各森林类型的平均值。在石漠化程度不同的地区,植物总体的水力导度和水分运输的安全性没有呈现出明显的规律,但是同种植物在较为干旱的严重石漠化地区,其木质部安全性较高,植物在周围环境的影响下木质部水力结构朝着更适应周围环境的方向发展。 贵州喀斯特地区常绿植物和落叶植物的水力结构差异较为明显(P<0.05)。落叶树种主要在夏季生长,其最大水力导度较高,而冬季依靠落叶等方式度过不利的生长环境,因此其木质部安全性较常绿树种更为脆弱。总体而言,贵州喀斯特森林优势木本植物的在水力导度与安全性之间存在权衡关系,说明在大尺度水平上随着水力导度的提高即水分运输效率的提高,植物木质部抗空穴化的能力降低。
Resumo:
Objective: The present study was performed to investigate the influence of different routes of perfusion on the distribution of the preservation solutions in the lung parenchyma and upper airways. Methods: Pigs were divided into four groups: control (n = 6), pulmonary artery (PA) (n = 6), simultaneous PA + bronchial artery (BA) (n = 8), and retrograde delivery (n = 6). After preparation and cannulation, cardioplegia solution and Euro- Collins solution (ECS) for lung preservation were given simultaneously. After removal of the heart, the double lung bloc was harvested. Following parameters were assessed: total and regional perfusion (dye-labeled microspheres), tissue water content, PA, aorta, left atrial and left ventricular pressures, cardiac output and lung temperature. Results: Our data show that flow of the ECS in lung parenchyma did not reach control values (9.4 ± 1.0 ml/min per g lung wet weight) regardless of the route of delivery (PA 6.3 ± 1.5, PA + BA 4.8 ± 0.9, retrograde 2.7 ± 0.9 ml/min per g lung wet weight). However, flow in the proximal and distal trachea were significantly increased by PA + BA delivery (0.970 ± 0.4, respectively, 0.380 ± 0.2 ml/min per g) in comparison with PA (0.023 ± 0.007, respectively, 0.024 ± 0.070 ml/min per g), retrograde (0.009 ± 0.003, respectively, 0.021 ± 0.006 ml/min per g) and control experiments (0.125 ± 0.0018, respectively, 0.105 ± 0.012 ml/g per min). Similarly the highest flow rates in the right main bronchus were achieved by PA + BA delivery (1.04 ± 0.4 ml/min per g) in comparison with 0.11 ± 0.03 in control, 0.033 ± 0.008 in PA, and 0.019 ± 0.005 ml/min per g in retrograde group. Flows in the left main bronchus were 0.09 ± 0.02 ml/min per g in control, 0.045 ± 0.012 ml/min per g in PA, and 0.027 ± 0.006 ml/min per g in retrograde group. The flow rates were significantly (P = 0.001) increased by PA + BA delivery of the storage solution (0.97 ± 0.3 ml/min per g). Conclusions: Our data show that the distribution of ECS for lung preservation is significantly improved in airway tissues (trachea and bronchi) if a simultaneous PA + BA delivery is used.
Resumo:
A major aim in lung transplantation is to prevent the loss of structural integrity due to ischemia and reperfusion (I/R) injury. Preservation solutions protect the lung against I/R injury to a variable extent. We compared the influence of two extracellular-type preservation solutions (Perfadex, or PX, and Celsior, or CE) on the morphological alterations induced by I/R. Pigs were randomly assigned to sham (n = 4), PX (n = 5), or CE (n = 2) group. After flush perfusion with PX or CE, donor lungs were excised and stored for 27 hr at 4 degrees C. The left donor lung was implanted into the recipient, reperfused for 6 hr, and, afterward, prepared for light and electron microscopy. Intra-alveolar, septal, and peribronchovascular edema as well as the integrity of the blood-air barrier were determined stereologically. Intra-alveolar edema was more pronounced in CE (219.80 +/- 207.55 ml) than in PX (31.46 +/- 15.75 ml). Peribronchovascular (sham: 13.20 +/- 4.99 ml; PX: 15.57 +/- 5.53 ml; CE: 31.56 +/- 5.78 ml) and septal edema (thickness of alveolar septal interstitium, sham: 98 +/- 33 nm; PX: 84 +/- 8 nm; CE: 249 +/- 85 nm) were only found in CE. The blood-air barrier was similarly well preserved in sham and PX but showed larger areas of swollen and fragmented epithelium or endothelium in CE. The present study shows that Perfadex effectively prevents intra-alveolar, septal, and peribronchovascular edema formation as well as injury of the blood-air barrier during I/R. Celsior was not effective in preserving the lung from morphological I/R injury.
Resumo:
Clinically healthy mixed breed dogs (n = 20) were used to determine if a Tris (tromethamine)-buffered test solution, Otinide((R)) (Trademark of Dermcare-Vet Pty-Ltd, Australia), containing disodium ethylenediamine tetraacetic acid (EDTA; 1.21 g/L) and polyhexamethylene biguanide (PHMB; 0.22 g/L) caused ototoxicity or vestibular dysfunction. The dogs were randomly assigned to either a control group (group A, n = 10) receiving saline, or a treatment group (group B, n = 10) receiving the test solution. Phase 1 of the study consisted of applying 5.0 mL of saline to both ears of the control group (group A) and 5 mL of test solution to both ears of the test group (group B), for 21 days. A bilateral myringotomy was then performed on each dog under deep sedation. Phase 2 of the study then consisted of applying 2.0 mL of the saline to both ears of the control group (group A) and 2.0 mL of the test solution to both ears of the test group (group B), for 14 days. Throughout the study, dogs were examined for clinical health, and underwent otoscopic, vestibular and auditory examinations. The auditory examinations included brainstem auditory evoked potential (BAEP) threshold and supra-threshold assessments using both click and 8 kHz tone burst stimuli. The absence of vestibular signs and effects on the BAEP attributable to the test solution suggested the test solution could be applied safely to dogs, including those with a damaged tympanic membrane.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.