212 resultados para Fluorides.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The luminescence from Eu2+ ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) -> 4f(7) transition of Eu2+ ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu2+ comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) -> 4f(7) transition of Eu2+. Above 5 GPa, the pressure behavior of the 4f(6)5d(1) -> 4f(7) transition of EU2+ in BaF2: EU2+ is the same as the normal emission of Eu2+ in CaF2 and SrF2 phosphors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanide fluoride LnF(3) (Ln = La to Lu) nano-/microcrystals with multiform crystal structures (hexagonal and orthorhombic) and morphologies (separated elongated nanoparticles, aggregated nanoparticles, polyhedral microcrystals) were successfully synthesized by a facile, effective, and environmentally friendly hydrothermal method. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were used to characterize the samples. The experimental results indicated that the use of NaBF4 is indispensable for obtaining LnF(3) crystal structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we reported the synthesis of nearly monodisperse and well-defined one-dimensional (1D) rare earth fluoride(beta-NaREF4) (RE = Y, Sm, Eu, Gd, Tb, Dy, and Ho) nanowires/nanorods by in situ acid corrosion and anion exchange approach using RE(OH)(3) as precursors via a facile hydrothermal route. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy. scanning electron microscopy (SEM), transmission electron microscopy (TEM). high-resolution transmission electron microscopy (HRTEM), and photoluminescence(PL)spectroscopy were used to characterize the samples. The results show that the as-prepared rare earth fluoride (beta-NaREF4) nanowires/nanorods preserve the basic morphology of the initial RE(OH)(3) precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex fluorides KMgF3 and KZnF3 with Perovskite structures were solvothermally synthesised at 150-180degreesC and characterised by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex fluorides KCoF3 and KNiF3 with perovskite structures were solvothermally synthesized at 120-180 C and characterized by means of X-ray powder diffraction, scanning electron microscopy. thermogravimetric analysis and infrared spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex fluorides of AZnF(3) (A = Na, K), which are isostructural with perovskite phases were obtained by the method of hydrothermal synthesis at 160-220 degrees C. Compared with traditional high-temperature solid-state method, the products were pure and contained lower amount of oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex fluorides LiYF4, KYF4, BaBeF4 and AYF(4)Eu(x) (A = Li, K) are hydrothermally synthesized at 140-240 degrees C and characterized by powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy, scanning electron microscopy and luminescence measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex fluorides, LiBaF3 and KMgF3; which are isostructural with perovskite phases, are hydrothermally synthesized at 120-240 degrees C and characterized by powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy and scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Europium (II) and europium (III) have been observed in MMgF(4):xEu, yTb (M=Ca, Sr, Ba) phosphors using their typical photoluminescence spectra when are synthesized in Ar or an Ar/H-2 stream. The valence state of Eu is influenced by terbium. It is notable that the intensities of the electron spin resonance peaks corresponding to Eu2+ change in a regular way when terbium ions are incorporated which can be explained by an electron transfer mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple technique for preparation of powder binary fluorides activated with divalent samarium ions is described. The samarium impurity is introduced as samarium trifluoride SmF3 and hydrogen acts as the reducing agent to transform Sm3+ into Sm2+. Using this method, samarium has been stabilized in the divalent state in some fluorides: KMgF3, LiBaF3, BaBeF4, SrMgF4 and BaMgF4. Moreover, BaBeF4, SrMgF4 and BaMgF4 have never been activated with Sm2+ ions up to now. We also find that under the same synthetic conditions samarium can not be stabilized in the divalent state in some fluorides: KCaF3, CaBeF4 and CaMgF4, but the characteristic luminescence of trivalent samarium Sm3+ appears in these matrices. The emission and excitation spectra of samarium (Sm2+ and Sm3+) in these binary fluorides are presented and briefly discussed. The relationship between the oxidation state of samarium and the composition, the structure of matrices is also analyzed.