989 resultados para Fluorescent dissolved organic matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of porewaters from marine sediment cores from six different areas was measured. In most cases, fluorescence was affected primarily by the diagenesis of organic carbon first through sulfate reduction and subsequently by methane generation. Typically, fluorescence, dissolved organic carbon (DOC), absorbance, alkalinity, and ammonium ion concentrations correlate quite well, increasing in the upper sections of anoxic sediments and co-varying in deeper sections of these cores. The good correlation of DOC with fluorescence in the three cores in which DOC was measured indicates that fluorescence can be used to make a first order estimate of DOC concentration in anoxic porewaters. Data are consistent with a model in which labile organic matter in the sediments is broken down by sulfur reducing bacteria to low molecular weight monomers. These monomers are either remineralized to CO2 or polymerize to form dissolved, fluorescent, high molecular weight molecules. The few exceptions to this model involve hydrothermally generated hydrocarbons that are formed in situ in the Guaymas Basin or are horizontally advected along the decollement in the Nankai Trench.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is one of the largest carbon reservoirs on this planet and is present in aquatic environments as a highly complex mixture of organic compounds. The Florida coastal Everglades (FCE) is one of the largest wetlands in the world. DOM in this system is an important biogeochemical component as most of the nitrogen (N) and phosphorous (P) are in organic forms. Achieving a better understanding of DOM dynamics in large coastal wetlands is critical, and a particularly important issue in the context of Everglades restoration. In this work, the environmental dynamics of surface water DOM on spatial and temporal scales was investigated. In addition, photo- and bio-reactivity of this DOM was determined, surface-to-groundwater exchange of DOM was investigated, and the size distribution of freshwater DOM in Everglades was assessed. The data show that DOM dynamics in this ecosystem are controlled by both hydrological and ecological drivers and are clearly different on spatial scales and variable seasonally. The DOM reactivity data, modeled with a multi-pool first order degradation kinetics model, found that fluorescent DOM in FCE is generally photo-reactive and bio-refractory. Yet the sequential degradation proved a “priming effect” of sunlight on the bacterial uptake and reworking of this subtropical wetland DOM. Interestingly, specific PARAFAC components were found to have different photo- and bio-degradation rates, suggesting a highly heterogeneous nature of fluorophores associated with the DOM. Surface-to-groundwater exchange of DOM was observed in different regions of the system, and compositional differences were associated with source and photo-reactivity. Lastly, the high degree of heterogeneity of DOM associated fluorophores suggested based on the degradation studies was confirmed through the EEM-PARAFAC analysis of DOM along a molecular size continuum, suggesting that the fluorescence characteristics of DOM are highly controlled by different size fractions and as such can exhibit significant differences in reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27 × 109 mg C d−1 and 0.075 × 109 mg C d−1, respectively, and the Harney River is estimated as 1.9 × 109 mg C d−1 and 0.20 × 109 mg C d−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy) acetic acid), isoproturon (3-(4-isopropylphenyl)1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A soil (sandy loam) column leaching study aimed to determine the extent of mobility and co-mobility of Cu, Ni, Zn and dissolved organic matter (DOM) released from a surface-application (equivalent to 50 t ds ha(-1)) of anaerobically-digested sewage sludge. Leaching of DOM through It the soil column was found to be almost un-retarded. Decidedly similar behaviour was exhibited by Ni suggesting that it migrated as organic complexes. Whilst Cu was also found to be leached, significant retardation was evident. However, the importance of DOM in promoting the mobility of both Cu and Ni was evidenced by their lack of mobility when added to the soil column as inorganic forms. The presence of DOM did not prevent Zn from becoming completely adsorbed by the soil solid phase. In relation to WHO drinking water guidelines, only Ni concentrations showed potential environmental significance. due to the relatively poor retention of Ni by the sludge solid phase. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexation of Cu by sewage sludge-derived dissolved organic matter (SSDOM) is a process by which the environmental significance of the element may become enhanced due to reduced soil sorption and, hence, increased mobility. The work described in this paper used an ion selective electrode procedure to show that SSDOM complexation of Cu was greatest at intermediate pH values because competition between hydrogen ions and Cu for SSDOM binding sites, and between hydroxyl ions and SSDOM as Cu ligands, was lowest at such values. Batch sorption experiments further showed that the process of Cu complexation by SSDOM provided an explanation for enhanced desorption of Cu from the solid phase of a contaminated, organic matter-rich, clay loam soil, and reduced adsorption of Cu onto the solid phase of a sandy loam soil. Complexation of Cu by SSDOM did not affect uptake of Cu by spring barley plants, when compared to free ionic Cu, in a sand-culture pot experiment. However, it did appear to lead to greater biomass yields of the plant; perhaps indicating that the Cu-SSDOM complex had a lower toxicity towards the plant than the free Cu ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sewage-sludge-amended soils generally contain elevated levels of organic matter and heavy metals compared to control soils. Because organic matter is known to complex with heavy metals, the solubility behavior of the organic matter in such soils may exert a significant influence on the solubility of the metals. Little is known about such a process. Using batch experiments in which the solubility of organic matter in a heavily sludge-amended soil was artificially manipulated, we show that the solubilities of the heavy metals copper (Cu), nickel (Ni), and lead (Pb) show a strong positive relationship to the solubility of organic matter, particularly at high pH. The results suggest that under field conditions, spatiotemporal variations in the solid-solution partitioning of organic matter may have a bearing on the environmental significance (mobility and bioavailability) of these heavy metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean.