960 resultados para Flow electrochemical reactor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport phenomena in radial flow metalorganic chemical vapor deposition (MOCVD) reactor with three concentric vertical inlets are studied by two-dimensional numerical modeling. By varying the parameters such as gas pressure, flow rates combination of multi-inlets, geometric shapes and sizes of reactor and flow distributor, temperatures of susceptor and ceiling, and susceptor rotation, the corresponding velocity, temperature, and concentration fields inside the reactor are obtained; the onset and change of flow recirculation cells under influences of those parameters are determined. It is found that recirculation cells, originated from flow separation near the bend of reactor inlets, are affected mainly by the reactor height and shape, the operating pressure, the flow rates combination of multi-inlets, and the mean temperature between susceptor and ceiling. By increasing the flow rate of mid-inlet and the mean temperature, decreasing the pressure, maintaining the reactor height below certain criteria, and trimming the bends of reactor wall and flow distributor to streamlined shape, the recirculation cells can be minimized so that smooth and rectilinear flow prevails in the susceptor region, which corresponds to smooth and rectilinear isotherms and larger reactant concentration near the susceptor. For the optimized reactor shape, the reactor size can be enlarged to diameter D = 40 cm and height H = 2 cm without flow recirculation. The susceptor rotation over a few hundred rpm around the reactor central axis will induce the recirculation cell near the exit and deflect the streamlines near the susceptor, which is not the case for vertical reactors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The H+NO2 titration scheme for the determination of atomic hydrogen densities within a microwave excited flow tube reactor has been investigated by laser-induced fluorescence spectroscopy in the vacuum UV. Absolute hydrogen densities are determined on the basis of calibration by Rayleigh scattering from argon. The measurement is performed at a gas mixture containing 0.5% of D2 added to the main gas H2. The ground state density of the hydrogen atoms generated in the flow tube reactor was inferred from the fluorescence radiation of the spectrally shifted optically thin D-Lyman-a transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of a solid polymeric electrolyte, spe, is not commonly found in organic electrosynthesis despite its inherent advantages such as the possible elimination of the electrolyte entailing simpler purification processes, a smaller sized reactor and lower energetic costs. In order to test if it were possible to use a spe in industrial organic electrosynthesis, we studied the synthesis of 1-phenylethanol through the electrochemical hydrogenation of acetophenone using Pd/C 30 wt% with different loadings as cathode and a hydrogen gas diffusion anode. A Polymer Electrolyte Membrane Electrochemical Reactor, PEMER, with a fuel cell structure was chosen to carry out electrochemical reduction with a view to simplifying an industrial scale-up of the electrochemical process. We studied the influence of current density and cathode catalyst loading on this electroorganic synthesis. Selectivity for 1-phenylethanol was around 90% with only ethylbenzene and hydrogen detected as by-products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel polymer electrolyte membrane electrochemical reactor (PEMER) configuration has been employed for the direct electrooxidation of propargyl alcohol (PGA), a model primary alcohol, towards its carboxylic acid derivatives in alkaline medium. The PEMER configuration comprised of an anode and cathode based on nanoparticulate Ni and Pt electrocatalysts, respectively, supported on carbonaceous substrates. The electrooxidation of PGA was performed in 1.0 M NaOH, where a cathode based on a gas diffusion electrode was manufactured for the reduction of oxygen in alkaline conditions. The performance of a novel alkaline anion-exchange membrane based on Chitosan (CS) and Poly(vinyl) alcohol (PVA) in a 50:50 composition ratio doped with a 5 wt.% of poly (4-vinylpyridine) organic ionomer cross-linked, methyl chloride quaternary salt resin (4VP) was assessed as solid polymer electrolyte. The influence of 4VP anionic ionomer loading of 7, 12 and 20 wt.% incorporated into the electrocatalytic layers was examined by SEM and cyclic voltammetry (CV) upon the optimisation of the electroactive area, the mechanical stability and cohesion of the catalytic ink onto the carbonaceous substrate for both electrodes. The performance of the 4VP/CS:PVA membrane was compared with the commercial alkaline anion-exchange membrane FAA −a membrane generally used in direct alcohol alkaline fuel cells- in terms of polarisation plots in alkaline conditions. Furthermore, preparative electrolyses of the electrooxidation of PGA was performed under alkaline conditions of 1 M NaOH at constant current density of 20 mA cm−2 using a PEMER configuration to provide proof of the principle of the feasibility of the electrooxidation of other alcohols in alkaline media. PGA conversion to Z isomers of 3-(2-propynoxy)-2-propenoic acid (Z-PPA) was circa 0.77, with average current efficiency of 0.32. Alkaline stability of the membranes within the PEMER configuration was finally evaluated after the electrooxidation of PGA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A solid-state electrochemical reactor with ceramic proton-conducting membrane has been used to study the effect of electrochemically induced hydrogen spillover on the catalytic activity of platinum during ethylene oxidation. Suitable proton-conducting electrolyte membranes (Gd-doped BaPrO 3 (BPG) and Y-doped BaZrO3 (BZY)) were fabricated. These materials were chosen because of their protonic conductivity in the operational temperature region of the reaction (400-700 °C). The BZY-based electrochemical cell was used to investigate the open-circuit voltage (OCV) dependence on H2 partial pressure with comparison being made to the theoretical OCV as predicted by the Nernst equation. Furthermore, the BZY pellets were used to study the effect of proton transfer of the catalytic activity of platinum during ethylene oxidation. The reaction was found to exhibit electrochemical promotion at 400 °C and to be electrophilic in nature, i.e. proton addition to the platinum surface resulted in an increase in reaction rate. At higher temperatures, the rate was not affected, within experimental error, by proton addition or removal. Under similar conditions, AC impedance showed that there was a large overall cell resistance at 400 °C with significantly decreased resistance at higher temperatures. It is possible that there could be a relationship between large cell resistances and the onset of electrochemical promotion in this system but there is, as yet, no conclusive evidence for this. © 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many pollutants dumped in waterways, such as dyes and pesticides, have become so ubiquitous that they represent a serious threat to human health. The electrochemical oxidation is presented as an alternative clean, efficient and economic degradation of wastewater containing organic compounds and a number of advantages of this technique is to just not make use of chemical reagents, since only electrical energy is consumed during the removal of pollutants organic. However, despite being a promising alternative, still needs some tweaking in order to obtain better efficiency in the elimination of persistent pollutants. Thus, this study sought a relationship between a recently discovered phenomenon that reflects the participation of dissolved oxygen in solution in the electrochemical oxidation process, as an anomaly, present a kinetic model that shows instantaneous current efficiency (ICE) above 100% limited by theory, manifested for some experiments with phenolic compounds with H2SO4 or HClO4 as supporting electrolyte with electrodes under anodic oxidation on boron doped diamond (BDD). Therefore it was necessary to reproduce the data ICE exposes the fault model, and thus the 2-naphthol was used as phenolic compound to be oxidised at concentrations of 9, 12 and 15 mmol L-1, and H2SO4 and HClO4 to 1 mol L-1 as a supporting electrolyte under a current density of 30 mA cm-2 in an electrochemical reactor for continuous flow disk configuration, and equipped with anodes DDB at room temperature (25 oC). Experiments were performed using N2 like as purge gas for eliminate oxygen dissolved in solution so that its influence in the system was studied. After exposure of the anomaly of the ICE model and investigation of its relationship with dissolved O2, the data could be treated, making it possible for confirmation. But not only that, the data obtained from eletranálise and spectroscopic analysis suggest the involvement of other strongly oxidizing species (O3 (ozone) and O radicals and O2 -), since the dissolved O2 can be consumed during the formation of new strong oxidizing species, not considered until now, something that needs to be investigated by more accurate methods that we may know a little more of this system. Currently the performance of the electrocatalytic process is established by a complex interaction between different parameters that can be optimized, so it is necessary to the implementation of theoretical models, which are the conceptual lens with which researchers see

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow-cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III). The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2-210 μmol l-1 H2O2 with a LD of 1.8 μmol l-1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10-5 mol l-1 and 6.8×10-5 mol l-1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 μg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved. Copyright © Taylor & Francis Group, LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient and safe heparin anticoagulation has remained a problem for continuous renal replacement therapies and intermittent hemodialysis for patients with acute renal failure. To make heparin therapy safer for the patient with acute renal failure at high risk of bleeding, we have proposed regional heparinization of the circuit via an immobilized heparinase I filter. This study tested a device based on Taylor-Couette flow and simultaneous separation/reaction for efficacy and safety of heparin removal in a sheep model. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. The device, referred to as a vortex flow plasmapheretic reactor, consisted of two concentric cylinders, a priming volume of 45 ml, a microporous membrane for plasma separation, and an outer compartment where the immobilized heparinase I was fluidized separately from the blood cells. Manual white cell and platelet counts, hematocrit, total protein, and fibrinogen assays were performed. Heparin levels were indirectly measured via whole-blood recalcification times (WBRTs). The vortex flow plasmapheretic reactor maintained significantly higher heparin levels in the extracorporeal circuit than in the sheep (device inlet WBRTs were 1.5 times the device outlet WBRTs) with no hemolysis. The reactor treatment did not effect any physiologically significant changes in complete blood cell counts, platelets, and protein levels for up to 2 hr of operation. Furthermore, gross necropsy and histopathology did not show any significant abnormalities in the kidney, liver, heart, brain, and spleen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pre-pilot scale synthesis of 1-phenylethanol was carried out by the cathodic hydrogenation of acetophenone in a 100 cm2 (geometric area) Polymer Electrolyte Membrane Electrochemical Reactor. The cathode was a Pd/C electrode. Hydrogen oxidation on a gas diffusion electrode was chosen as anodic reaction in order to take advantage of the hydrogen evolved during the reduction. This hydrogen oxidation provides the protons needed for the synthesis. The synthesis performed with only a solid polymer electrolyte, spe, has lower fractional conversion although a higher selectivity than that carried out using a support–electrolyte–solvent together with a spe. However, the difference between these two cases is rather small and since the work-up and purification of the final product are much easier when only a spe is used, this last process was chosen for the pre-pilot electrochemical synthesis of 1-phenylethanol.