203 resultados para Flocculation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil exploration is one of the most important industrial activities of modern society. Despite its derivatives present numerous applications in industrial processes, there are many undesirable by-products during this process, one of them is water separated from oil, called water production, it is constituted by pollutants difficult to degrade. In addition, the high volume of generated water makes its treatment a major problem for oil industries. Among the major contaminants of such effluents are phenol and its derivatives, substances of difficult natural degradation, which due their toxicity must be removed by a treatment process before its final disposal. In order to facilitate the removal of phenol in wastedwater from oil industry, it was developed an extraction system by ionic flocculation with surfactant. The ionic flocculation relies on the reaction of carboxylate surfactant and calcium íons, yielding in an insoluble surfactant that under stirring, aggregates forming floc capable of attracting the organic matter by adsorption. In this work was used base soap as ionic surfactant in the flocculation process and evaluated phenol removal efficiency in relation to the following parameters: surfactant concentration, phenol, calcium and electrolytes, stirring speed, contact time, temperature and pH. The flocculation of the surfactant occurred in the effluent (initial phenol concentration = 100 ppm) reaching 65% of phenol removal to concentrations of 1300 ppm and calcium of 1000 ppm, respectively, at T = 35 °C, pH = 9.7, stirring rate = 100 rpm and contact time of 5 minutes. The permanence of the flocs in an aqueous medium promotes desorption of the phenol from the flake surface to the solution, reaching 90% of desorption at a time of 150 minutes, and the study of desorption kinetics showed that Lagergren model of pseudo-first order was adequate to describe the phenol desorption. These results shows that the process may configure a new alternative of treatment in regard the removal of phenol of aqueous effluent of oil industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humanity is shaped by its relationships with microbes. From bacterial infections to the production of biofuels, industry and health often hinge on our control of microbial populations. Understanding the physiological and genetic basis of their behaviors is therefore of the highest importance. To this end I have investigated the genetic basis of plastic adhesion in Saccharomyces cerevisiae, the mechanistic and evolutionary dynamics of mixed species biofilms with Escherichia coli and S. cerevisiae, and the induction of filamentation in E. coli. Using a bulk segregant analysis on experimentally evolved populations, I detected 28 genes that are likely to mediate plastic adhesion in S. cerevisiae. With a variety of imaging and culture manipulation techniques, I found that particular strains of E. coli are capable of inducing flocculation and macroscopic biofilm formation via coaggregation with yeast. I also employed experimental evolution and microbial demography techniques to find that selection for mixed species biofilm association leads to lower fecundity in S. cerevisiae. Using culture manipulation and imaging techniques, I also found that E. coli are capable of inducing a filamentous phenotype with a secreted signal that has many of the qualities of a quorum sensing molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main question, posed in the work scheme before laboratory analysis was started, was expressed as follows: Do marked seasonal fluctuations occur in trace element content of the sediment surface, and what are the probable influences of factors such as changing hydrographical parameters, plankton sequence etc. ? Special attention was paid to elements known as pollutants, for example mercury. Within this framework samples have been analysed for their contents of manganese, iron, zinc, lead, and mercury. The amounts of silica and organically-bound carbon serve in most cases as reference values for the trace element content. On sand temporary conditions of increased C org content raise the concentrations of all determined elements. Especially the values reached for mercury in July are worth nothing. It is concluded that Zn, Pb, and Hg tend to enrich with respect to C org as the decomposition of organic matter progresses. On mud-sand flocculation and precipitation of Mn/Fe-hydroxides probably represent an additional concentrating factor for the other elements as the relationship of the results for zinc and manganese shows. Manganese may indicate a seasonally related concentrating cycle at the sediment surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface water in the Transpolar Drift in the Arctic Ocean has a strong signature of 228Ra. In an earlier study of 228Ra in the open Arctic we showed that the major 228Ra source had to be in the Siberian shelf seas, but only a single shelf station was published so far. Here we investigate the sources of this signal on the Siberian shelves by measurements of 228Ra and 226Ra in surface waters of the Kara and Laptev Sea, including the Ob, Yenisey and Lena estuaries. In the Ob and Lena rivers we found an indication for a very strong and unexpected removal of both isotopes in the early stage of estuarine mixing, presumably related to flocculation of organic-rich material. Whereas 226Ra behaves conservatively on the shelf, the distribution of 228Ra is governed by large inputs on the shelves, although sources are highly variable. In the Kara Sea the maximum activity was found in the Baydaratskaya Bay, where tidal resonance and low freshwater supply favour 228Ra accumulation. The Laptev Sea is a stronger source for 228Ra than the Kara Sea. Since a large part of Kara Sea water flows through the Laptev Sea, the 228Ra signal in the Transpolar Drift can be described as originating on the Laptev shelf. The combined freshwater inputs from the Eurasian shelves thus produce a common radium signature with a 228Ra/226Ra activity ratio of 4.0 at 20% river water. The radium signals of the individual Siberian rivers and shelves cannot be separated, but their signal is significantly different from the signal produced on the Canadian shelf (Smith et al., in press). In this respect, the radium tracers add to the information given by Barium. Moreover, with the 5.8 year half-life of 228Ra, they have the potential to serve as a tracer for the age of a water mass since its contact with the shelves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : The structural build-up of fresh cement-based materials has a great impact on their structural performance after casting. Accordingly, the mixture design should be tailored to adapt the kinetics of build-up given the application on hand. The rate of structural build-up of cement-based suspensions at rest is a complex phenomenon affected by both physical and chemical structuration processes. The structuration kinetics are strongly dependent on the mixture’s composition, testing parameters, as well as the shear history. Accurate measurements of build-up rely on the efficiency of the applied pre-shear regime to achieve an initial well-dispersed state as well as the applied stress during the liquid-solid transition. Studying the physical and chemical mechanisms of build-up of cement suspensions at rest can enhance the fundamental understanding of this phenomenon. This can, therefore, allow a better control of the rheological and time-dependent properties of cement-based materials. The research focused on the use of dynamic rheology in investigating the kinetics of structural build-up of fresh cement pastes. The research program was conducted in three different phases. The first phase was devoted to evaluating the dispersing efficiency of various disruptive shear techniques. The investigated shearing profiles included rotational, oscillatory, and combination of both. The initial and final states of suspension’s structure, before and after disruption, were determined by applying a small-amplitude oscillatory shear (SAOS). The difference between the viscoelastic values before and after disruption was used to express the degree of dispersion. An efficient technique to disperse concentrated cement suspensions was developed. The second phase aimed to establish a rheometric approach to dissociate and monitor the individual physical and chemical mechanisms of build-up of cement paste. In this regard, the non-destructive dynamic rheometry was used to investigate the evolutions of both storage modulus and phase angle of inert calcium carbonate and cement suspensions. Two independent build-up indices were proposed. The structural build-up of various cement suspensions made with different cement contents, silica fume replacement percentages, and high-range water reducer dosages was evaluated using the proposed indices. These indices were then compared to the well-known thixotropic index (Athix.). Furthermore, the proposed indices were correlated to the decay in lateral pressure determined for various cement pastes cast in a pressure column. The proposed pre-shearing protocol and build-up indices (phases 1 and 2) were then used to investigate the effect of mixture’s parameters on the kinetics of structural build-up in phase 3. The investigated mixture’s parameters included cement content and fineness, alkali sulfate content, and temperature of cement suspension. Zeta potential, calorimetric, spectrometric measurements were performed to explore the corresponding microstructural changes in cement suspensions, such as inter-particle cohesion, rate of Brownian flocculation, and nucleation rate. A model linking the build-up indices and the microstructural characteristics was developed to predict the build-up behaviour of cement-based suspensions The obtained results showed that oscillatory shear may have a greater effect on dispersing concentrated cement suspension than the rotational shear. Furthermore, the increase in induced shear strain was found to enhance the breakdown of suspension’s structure until a critical point, after which thickening effects dominate. An effective dispersing method is then proposed. This consists of applying a rotational shear around the transitional value between the linear and non-linear variations of the apparent viscosity with shear rate, followed by an oscillatory shear at the crossover shear strain and high angular frequency of 100 rad/s. Investigating the evolutions of viscoelastic properties of inert calcite-based and cement suspensions and allowed establishing two independent build-up indices. The first one (the percolation time) can represent the rest time needed to form the elastic network. On the other hand, the second one (rigidification rate) can describe the increase in stress-bearing capacity of formed network due to cement hydration. In addition, results showed that combining the percolation time and the rigidification rate can provide deeper insight into the structuration process of cement suspensions. Furthermore, these indices were found to be well-correlated to the decay in the lateral pressure of cement suspensions. The variations of proposed build-up indices with mixture’s parameters showed that the percolation time is most likely controlled by the frequency of Brownian collisions, distance between dispersed particles, and intensity of cohesion between cement particles. On the other hand, a higher rigidification rate can be secured by increasing the number of contact points per unit volume of paste, nucleation rate of cement hydrates, and intensity of inter-particle cohesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O lodo gerado em Estação de Tratamento de Água (ETA) durante as etapas de floculação e decantação é classificado como resíduo não inerte. Estudos recentes apontam para uma diminuição na concentração de agrotóxicos, fármacos e Produtos de Cuidado Pessoal (PCP) em águas, após o seu tratamento. Uma possível explicação seja que estes compostos possam estar ficando aderidos ao lodo; entretanto, a investigação desses compostos no lodo de ETA é bastante reduzida. Neste trabalho, foi realizada a otimização do método QuEChERS com determinação por Cromatografia Líquida acoplada a Espectrometria de Massas sequencial para analisar agrotóxicos (atrazina, simazina, clomazona e tebuconazol), fármacos (amitriptilina, cafeína, diclofenaco e ibuprofeno) e PCP (metilparabeno, propilparabeno, triclocarban e bisfenol A) em lodo de ETA, uma matriz bastante complexa, constituída basicamente de compostos inorgânicos (areia, argila e silte) e orgânicos (substâncias húmicas). Após otimizado, o método apresentou limites de quantificação ente 1 e 50 µg kg-1 e as curvas analíticas apresentaram valores de r maiores que 0,98. As recuperações variaram entre 50 e 120% com RSD ≤ 15%. O efeito matriz foi avaliado e observou-se a supressão do sinal para a maioria dos compostos, sendo o efeito compensado utilizando a quantificação por superposição na matriz. O método foi aplicado em amostras de lodo de ETA e foram identificados tebuconazol e metilparabeno em concentrações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous work (Nicu et al. 2013), the flocculation efficiency of three chitosans differing by molecular weight and charge density were evaluated for their potential use as wet end additives in papermaking. According to the promising results obtained, chitosan (single system) and its combination with bentonite (dual system) were evaluated as retention aids, and their efficiency was compared with poly(diallyl dimethyl ammonium chloride) (PDADMAC) and polyethylenimine (PEI). In single systems, chitosan was clearly more efficient in drainage rate than PDADMAC and PEI, especially those with the lowest molecular weights; however, retention is considerably lower. This drawback can be overcome by using dual systems with anionic bentonite microparticles, with the optimum ratio of polymer:bentonite being 1:4 (wt./wt.). In dual systems, the differences in retention were almost negligible, and the difference in drainage rate was even higher, together with better floc reversibility. The most efficient chitosan in single systems was Ch.MMW, while Ch.LMW was the most efficient in dual systems. The flocculation mechanism of chitosan was a combination of patch formation, charge neutralization, and partial bridge formation, and the predominant mechanism depended on the molecular weight and charge density of the chitosan.