5 resultados para Flagellomere


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schwarzula coccidophila sp. nov., a tiny Amazonian stingless bee, that attends scale insects (Cryptostigma Ferris, 1922, Coccidae) in its nest, is described. It is distinguished from Schwarzula timida (Silvestri, 1902), the only other species of the genus, mainly by the malar area longer than diameter of 3rd flagellomere, and the denser plumose pilosity. Additional records of S. timida is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptoconops nosopheris sp. n. (Diptera: Ceratopogonidae) is described from a blood-filled female biting midge in Early Cretaceous Burmese amber. The new species is characterized by a very elongate terminal flagellomere, elongate cerci, and an indistinct spur on the metatibia. This biting midge contained digenetic trypanosomes (Kinetoplastida: Trypanosomatidae) in its alimentary tract and salivary glands. These trypanosomes are described as Paleotrypanosoma burmanicus gen. n., sp. n., which represents the first fossil record of a Trypanosoma generic lineage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The total number and distribution per antennal flagellomere of sensilla placodea (olfactory disks), sensilla coeloconica, sensilla ampullacea and sensilla campaniformia were determined in workers of Nannotrigona testaceicornis Lepeletier a stingless bee species quite common in Brazil. The distribution of the sensilla was uniform, with the largest number occurring in flagellomere 10 and gradually decreasing in the direction of the basal flagellomeres in a way similar to that observed in Scaptotrigona postica Latreille.Nannotrigona testaceicornis had a larger number of sensilla ampullacea and a smaller number of sensilla coeloconica and sensilla campaniformia than Scaptotrigona postica. Although Nan notrigona testaceicornis does not communicate through the formation of pheromone trails, this species presents a larger quantity of sensilla placodea (relative to the length of the flagellum) than Scaptotrigona postica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of sensilla coeloconica, ampullacea and campaniformia of flagellomeres 3 to 10 of the antennae of workers of four honey bee types (Italian, Caucasian, African and Africanized) was studied by scanning electron microscopy. Comparisons of the four bee types showed that only African and Africanized honey bees did not differ from one another with respect to the number of sensilla coeloconica and ampullacea of flagellomere 10. African and Africanized honey bees and Caucasian and Italian honey bees also did not differ from one another in terms of flagellomere 9. In the other flagellomeres there were no differences among bee types. Italian and Caucasian honey bees differed from Africanized honey bees in terms of number of sensilla campaniformia on flagellomere 6, and Caucasian honey bees differed from African and Africanized honey bees in terms of flagellomere 3. Five significant but random correlation values were obtained between number of antennal sensilla and defensive behaviour in Africanized honey bees. Thus,there is no relationship between antennal structures and defence behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hygienic behavior is a desirable trait in honey bees (Apis mellifera L.), as hygienic bees quickly remove diseased brood, intermpting the infectious cycle. Hygienic lines of honey bees appear to be more sensitive to the odors of dead and diseased honey bee brood, and Africanized honey bees are generally more hygienic than are European honey bees. We compared the number of sensilla placodea, antennal sensory structures involved in the perception of odor, in 10 bees from each of six hygienic and four non-hygienic colonies of Africanized honey bees. The sensilla placodea of three of the terminal segments (flagellomeres) of the right antenna of each bee were counted with a scanning electron microscope. There were no significant differences in the mean numbers of sensilla placodea between the hygienic and non-hygienic bees, though the variance was higher in the hygienic group. Flagellomere 4 had significantly more sensilla placodea than flagellomeres 6 and 8. However, there was no significant difference between the other two flagellomeres. As hygienic bees are capable of identifying dead, injured, or infested brood inside a capped brood cell, sensilla placodea probably have an important role in enabling worker bees to sense sick brood. However, we did not find greater numbers of this sensory structure in the antennae of hygienic, compared to non-hygienic Africanized honey bees.