45 resultados para FitzHugh-Nagumo
Resumo:
Localized planar patterns arise in many reaction-diffusion models. Most of the paradigm equations that have been studied so far are two-component models. While stationary localized structures are often found to be stable in such systems, travelling patterns either do not exist or are found to be unstable. In contrast, numerical simulations indicate that localized travelling structures can be stable in three-component systems. As a first step towards explaining this phenomenon, a planar singularly perturbed three-component reaction-diffusion system that arises in the context of gas-discharge systems is analysed in this paper. Using geometric singular perturbation theory, the existence and stability regions of radially symmetric stationary spot solutions are delineated and, in particular, stable spots are shown to exist in appropriate parameter regimes. This result opens up the possibility of identifying and analysing drift and Hopf bifurcations, and their criticality, from the stationary spots described here.
Resumo:
We investigate regions of bistability between different travelling and stationary structures in a planar singularly-perturbed three-component reaction-diffusion system that arises in the context of gas discharge systems. In previous work, we delineated the existence and stabil-ity regions of stationary localized spots in this system. Here, we complement this analysis by establishing the stability regions of planar travelling fronts and stationary stripes. Taken together, these results imply that stable fronts and spots can coexist in three-component systems. Numerical simulations indicate that the stable fronts never move towards stable spots but instead move away from them.
Resumo:
Fractional mathematical models represent a new approach to modelling complex spatial problems in which there is heterogeneity at many spatial and temporal scales. In this paper, a two-dimensional fractional Fitzhugh-Nagumo-monodomain model with zero Dirichlet boundary conditions is considered. The model consists of a coupled space fractional diffusion equation (SFDE) and an ordinary differential equation. For the SFDE, we first consider the numerical solution of the Riesz fractional nonlinear reaction-diffusion model and compare it to the solution of a fractional in space nonlinear reaction-diffusion model. We present two novel numerical methods for the two-dimensional fractional Fitzhugh-Nagumo-monodomain model using the shifted Grunwald-Letnikov method and the matrix transform method, respectively. Finally, some numerical examples are given to exhibit the consistency of our computational solution methodologies. The numerical results demonstrate the effectiveness of the methods.
Resumo:
In this article, we analyse bifurcations from stationary stable spots to travelling spots in a planar three-component FitzHugh-Nagumo system that was proposed previously as a phenomenological model of gas-discharge systems. By combining formal analyses, center-manifold reductions, and detailed numerical continuation studies, we show that, in the parameter regime under consideration, the stationary spot destabilizes either through its zeroth Fourier mode in a Hopf bifurcation or through its first Fourier mode in a pitchfork or drift bifurcation, whilst the remaining Fourier modes appear to create only secondary bifurcations. Pitchfork bifurcations result in travelling spots, and we derive criteria for the criticality of these bifurcations. Our main finding is that supercritical drift bifurcations, leading to stable travelling spots, arise in this model, which does not seem possible for its two-component version.
Resumo:
Ce mémoire consiste en l’étude du comportement dynamique de deux oscillateurs FitzHugh-Nagumo identiques couplés. Les paramètres considérés sont l’intensité du courant injecté et la force du couplage. Juqu’à cinq solutions stationnaires, dont on analyse la stabilité asymptotique, peuvent co-exister selon les valeurs de ces paramètres. Une analyse de bifurcation, effectuée grâce à des méthodes tant analytiques que numériques, a permis de détecter différents types de bifurcations (point de selle, Hopf, doublement de période, hétéroclinique) émergeant surtout de la variation du paramètre de couplage. Une attention particulière est portée aux conséquences de la symétrie présente dans le système.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with a system that describes an electrical circuitcomposed by a linear system coupled to a nonlinear one involving a tunneldiode in a flush-and-fill circuit. One of the most comprehensive models for thiskind of circuits was introduced by R. Fitzhugh in 1961, when taking on carebiological tasks. The equation has in its phase plane only two periodic solutions,namely, the unstable singular point S0 and the stable cycle Γ. If the system isat rest on S0, the natural flow of orbits seeks to switch-on the process by going- as time goes by - toward its steady-state, Γ. By using suitable controls it ispossible to reverse such natural tendency going in a minimal time from Γ toS0, switching-off in this way the system. To achieve this goal it is mandatorya minimal enough strength on controls. These facts will be shown by means ofconsiderations on the null control sets in the process.
Resumo:
A fractional FitzHugh–Nagumo monodomain model with zero Dirichlet boundary conditions is presented, generalising the standard monodomain model that describes the propagation of the electrical potential in heterogeneous cardiac tissue. The model consists of a coupled fractional Riesz space nonlinear reaction-diffusion model and a system of ordinary differential equations, describing the ionic fluxes as a function of the membrane potential. We solve this model by decoupling the space-fractional partial differential equation and the system of ordinary differential equations at each time step. Thus, this means treating the fractional Riesz space nonlinear reaction-diffusion model as if the nonlinear source term is only locally Lipschitz. The fractional Riesz space nonlinear reaction-diffusion model is solved using an implicit numerical method with the shifted Grunwald–Letnikov approximation, and the stability and convergence are discussed in detail in the context of the local Lipschitz property. Some numerical examples are given to show the consistency of our computational approach.
Resumo:
A FitzHugh-Nagumo monodomain model has been used to describe the propagation of the electrical potential in heterogeneous cardiac tissue. In this paper, we consider a two-dimensional fractional FitzHugh-Nagumo monodomain model on an irregular domain. The model consists of a coupled Riesz space fractional nonlinear reaction-diffusion model and an ordinary differential equation, describing the ionic fluxes as a function of the membrane potential. Secondly, we use a decoupling technique and focus on solving the Riesz space fractional nonlinear reaction-diffusion model. A novel spatially second-order accurate semi-implicit alternating direction method (SIADM) for this model on an approximate irregular domain is proposed. Thirdly, stability and convergence of the SIADM are proved. Finally, some numerical examples are given to support our theoretical analysis and these numerical techniques are employed to simulate a two-dimensional fractional Fitzhugh-Nagumo model on both an approximate circular and an approximate irregular domain.
Resumo:
In this paper, a new alternating direction implicit Galerkin--Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank--Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived method is stable and convergent of order $2$ in time. An optimal error estimate in space is also obtained by introducing a new orthogonal projector. The present method is extended to solve the fractional FitzHugh--Nagumo model. Numerical results are provided to verify the theoretical analysis.
Resumo:
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.
Resumo:
This paper studies the excitability properties of a generalized FitzHugh-Nagumo model. The model differs from the classical FitzHugh-Nagumo model in that it accounts for the effect of cooperative gating variables such as activation of calcium currents. Excitability is explored by unfolding a pitchfork bifurcation that is shown to organize five different types of excitability. In addition to the three classical types of neuronal excitability, two novel types are described and distinctly associated to the presence of cooperative variables. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
Fifty years ago, FitzHugh introduced a phase portrait that became famous for a twofold reason: it captured in a physiological way the qualitative behavior of Hodgkin-Huxley model and it revealed the power of simple dynamical models to unfold complex firing patterns. To date, in spite of the enormous progresses in qualitative and quantitative neural modeling, this phase portrait has remained a core picture of neuronal excitability. Yet, a major difference between the neurophysiology of 1961 and of 2011 is the recognition of the prominent role of calcium channels in firing mechanisms. We show that including this extra current in Hodgkin-Huxley dynamics leads to a revision of FitzHugh-Nagumo phase portrait that affects in a fundamental way the reduced modeling of neural excitability. The revisited model considerably enlarges the modeling power of the original one. In particular, it captures essential electrophysiological signatures that otherwise require non-physiological alteration or considerable complexification of the classical model. As a basic illustration, the new model is shown to highlight a core dynamical mechanism by which calcium channels control the two distinct firing modes of thalamocortical neurons. © 2012 Drion et al.
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.