2 resultados para Fitonematodes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roses are widely used in landscaping. One of the most important fitossanitary problems of this ornamental plant in gardens is the fitonematodes, especially Meloidogyne hapla, which is the most important one in colder climate regions. This work had the objective of study the resistance of nine rose rootstocks (Rosa multiflora 'Paulista', R. multiflora 'Japanese', R. multiflora 'Iowa', R. multiflora 'Kopman's', R. indica × multiflora, R. indica 'Mayor', R. sp. 'Natual Brier', R. manetti and R. canina 'Inermis') to Meloidogyne hapla nematode. Ten replications of each rootstock were used. The roots, collected in a commercial area of cut roses, visually had galls there were isolated and identified. The inoculum of M. hapla was previously produced in rose and tomatoes seedlings under greenhouse conditions. The plants were harvested ninety days after inoculation. The roots were washed and the number of eggs and juveniles recuperated in the root system of each plant was estimated by the Final Population (FP), and the Reproductive Factor (RF) was calculated. The rootstocks with RF<1 values were considered resistant, and the ones with RF>1, susceptible. Rosa manetti and Rosa sp. 'Natual Brier' rootstocks showed the lowest values for RF, indicating that, although they are susceptible, they provide the lowest nematode reproduction. Based on the RF values, it was concluded that all the rose rootstocks evaluated were susceptible to M. hapla nematode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant-parasitic nematodes are responsible for serious injuries in roots and shoots of ornamental plants, reducing its beauty and consequently its economic value. This study aimed to ascertain the occurrence and distribution of plantparasitic nematodes through the analysis of the roots of ornamental and flowering plants at UNESP FCAV's landscape. The roots were collected from fifteen different species as follows: Anthurium andreannum, Rhododendron simsii, Impatiens walleriana, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Dracaena marginata, Ficus benjamina, Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'American Beauty' and 'Mini', Odontonema strictum, Portulaca grandiflora, Strelitzia reginae, Tradescantia zebrina and Tradescantia pallida. Samples of roots were processed. The plant-parasitic nematodes identified in the samples were: Meloidogyne sp. (Anthurium andreannum, Calathea stromata, Dieffenbachia picta, Ficus benjamina, Impatiens walleriana, Odontonema strictum, Portulaca grandiflora, Spathiphyllum ortgiesii 'Sensation'), Helicotylenchus dihystera (Calathea stromata, Dracaena marginata, Portulaca grandiflora, Spathiphyllum ortgiessi 'Sensation', Tradescantia pallida, Tradescantia zebrina), Tylenchus sp. (Anthurium andreannum, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Ficus benjamina, Rhododendron simsii), Aphelenchoides sp. (Dieffenbachia picta, Spathiphyllum ortgiesii 'Sensation', S. wallisi 'American Beauty'), Rotylenchulus reniformis (Cordyline terminalis, Dracaena marginata, Odontonema strictum), Pratylenchus sp. (Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'Mini'), Ditylenchus sp. (Spathiphyllum wallisi 'Mini'), Pratylenchus brachyurus (Tradescantia zebrina). The plant-parasitic nematodes weren't found in the roots of Strelitzia reginae.