953 resultados para First order traffic model
Resumo:
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.
Resumo:
In this paper we propose the Double Sampling X̄ control chart for monitoring processes in which the observations follow a first order autoregressive model. We consider sampling intervals that are sufficiently long to meet the rational subgroup concept. The Double Sampling X̄ chart is substantially more efficient than the Shewhart chart and the Variable Sample Size chart. To study the properties of these charts we derived closed-form expressions for the average run length (ARL) taking into account the within-subgroup correlation. Numerical results show that this correlation has a significant impact on the chart properties.
Resumo:
The significant challenge faced by government in demonstrating value for money in the delivery of major infrastructure resolves around estimating costs and benefits of alternative modes of procurement. Faced with this challenge, one approach is to focus on a dominant performance outcome visible on the opening day of the asset, as the means to select the procurement approach. In this case, value for money becomes a largely nominal concept and determined by selected procurement mode delivering, or not delivering, the selected performance outcome, and notwithstanding possible under delivery on other desirable performance outcomes, as well as possibly incurring excessive transaction costs. This paper proposes a mind-set change in this particular practice, to an approach in which the analysis commences with the conditions pertaining to the project and proceeds to deploy transaction cost and production cost theory to indicate a procurement approach that can claim superior value for money relative to other competing procurement modes. This approach to delivering value for money in relative terms is developed in a first-order procurement decision making model outlined in this paper. The model developed could be complementary to the Public Sector Comparator (PSC) in terms of cross validation and the model more readily lends itself to public dissemination. As a possible alternative to the PSC, the model could save time and money in preparation of project details to lesser extent than that required in the reference project and may send a stronger signal to the market that may encourage more innovation and competition.
Resumo:
Given global demand for new infrastructure, governments face substantial challenges in funding new infrastructure and simultaneously delivering Value for Money (VfM). The paper begins with an update on a key development in a new early/first-order procurement decision making model that deploys production cost/benefit theory and theories concerning transaction costs from the New Institutional Economics, in order to identify a procurement mode that is likely to deliver the best ratio of production costs and transaction costs to production benefits, and therefore deliver superior VfM relative to alternative procurement modes. In doing so, the new procurement model is also able to address the uncertainty concerning the relative merits of Public-Private Partnerships (PPP) and non-PPP procurement approaches. The main aim of the paper is to develop competition as a dependent variable/proxy for VfM and a hypothesis (overarching proposition), as well as developing a research method to test the new procurement model. Competition reflects both production costs and benefits (absolute level of competition) and transaction costs (level of realised competition) and is a key proxy for VfM. Using competition as a proxy for VfM, the overarching proposition is given as: When the actual procurement mode matches the predicted (theoretical) procurement mode (informed by the new procurement model), then actual competition is expected to match potential competition (based on actual capacity). To collect data to test this proposition, the research method that is developed in this paper combines a survey and case study approach. More specifically, data collection instruments for the surveys to collect data on actual procurement, actual competition and potential competition are outlined. Finally, plans for analysing this survey data are briefly mentioned, along with noting the planned use of analytical pattern matching in deploying the new procurement model and in order to develop the predicted (theoretical) procurement mode.
Resumo:
Given global demand for new infrastructure, governments face substantial challenges in funding new infrastructure and simultaneously delivering Value for Money (VfM). As background to this challenge, a brief review is given of current practice in the selection of major public sector infrastructure in Australia, along with a review of the related literature concerning the Multi-Attribute Utility Approach (MAUA) and the effect of MAUA on the role of risk management in procurement selection. To contribute towards addressing the key weaknesses of MAUA, a new first-order procurement decision making model is mentioned. A brief summary is also given of the research method and hypothesis used to test and develop the new procurement model and which uses competition as the dependent variable and as a proxy for VfM. The hypothesis is given as follows: When the actual procurement mode matches the theoretical/predicted procurement mode (informed by the new procurement model), then actual competition is expected to match optimum competition (based on actual prevailing capacity vis-à-vis the theoretical/predicted procurement mode) and subject to efficient tendering. The aim of this paper is to report on progress towards testing this hypothesis in terms of an analysis of two of the four data components in the hypothesis. That is, actual procurement and actual competition across 87 road and health major public sector projects in Australia. In conclusion, it is noted that the Global Financial Crisis (GFC) has seen a significant increase in competition in public sector major road and health infrastructure and if any imperfections in procurement and/or tendering are discernible, then this would create the opportunity, through the deployment of economic principles embedded in the new procurement model and/or adjustments in tendering, to maintain some of this higher level post-GFC competition throughout the next business cycle/upturn in demand including private sector demand. Finally, the paper previews the next steps in the research with regard to collection and analysis of data concerning theoretical/predicted procurement and optimum competition.
Resumo:
Given global demand for new infrastructure, governments face substantial challenges in funding new infrastructure and delivering Value for Money (VfM). As part of the background to this challenge, a critique is given of current practice in the selection of the approach to procure major public sector infrastructure in Australia and which is akin to the Multi-Attribute Utility Approach (MAUA). To contribute towards addressing the key weaknesses of MAUA, a new first-order procurement decision-making model is presented. The model addresses the make-or-buy decision (risk allocation); the bundling decision (property rights incentives), as well as the exchange relationship decision (relational to arms-length exchange) in its novel approach to articulating a procurement strategy designed to yield superior VfM across the whole life of the asset. The aim of this paper is report on the development of this decisionmaking model in terms of the procedural tasks to be followed and the method being used to test the model. The planned approach to testing the model uses a sample of 87 Australian major infrastructure projects in the sum of AUD32 billion and deploys a key proxy for VfM comprising expressions of interest, as an indicator of competition.
Resumo:
The two-dimensional,q-state (q>4) Potts model is used as a testing ground for approximate theories of first-order phase transitions. In particular, the predictions of a theory analogous to the Ramakrishnan-Yussouff theory of freezing are compared with those of ordinary mean-field (Curie-Wiess) theory. It is found that the Curie-Weiss theory is a better approximation than the Ramakrishnan-Yussouff theory, even though the former neglects all fluctuations. It is shown that the Ramakrishnan-Yussouff theory overestimates the effects of fluctuations in this system. The reasons behind the failure of the Ramakrishnan-Yussouff approximation and the suitability of using the two-dimensional Potts model as a testing ground for these theories are discussed.
Resumo:
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Includes index.