861 resultados para Fire regimes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical dry forests and savannas constitute more than half of all tropical forests and grasslands, but little is known about forest fire regimes within these two extensive types of ecosystems. Forest fire regimes in a predominantly dry forest in India, the Nilgiri landscape, and a predominantly savanna ecosystem in the Sathyamangalam landscape, were examined. Remote sensing data were applied to delineate burned areas, determine fire size characteristics, and to estimate fire-rotation intervals. Belt transects (0.5 ha) were used to estimate forest structure, diversity, and fuel loads. Mean area burned, mean number of fires, and mean fire size per year were substantially higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Mean fire-rotational interval was 7.1 yr in the Nilgiri landscape and 44.1 yr in the Sathyamangalam landscape. Tree (>= 10 cm diameter at breast height) species diversity, tree density, and basal area were significantly higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Total fuel loads were significantly higher in tropical dry and moist deciduous forests in the Nilgiri landscape, but total fuel loads were higher in the tropical dry thorn forests of the Sathyamangalam landscape. Thus, the two landscapes revealed contrasting fire regimes and forest characteristics, with more and four-fold larger fires in the Nilgiri landscape. The dry forests and savannas could be maintained by a combination of factors, such as fire, grazing pressures, and herbivore populations. Understanding the factors maintaining these two ecosystems will be critical for their conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentary charcoal records document changes in fire regime. We have identified 67 sites (30 sites with better than millennial resolution) which have records for some part of the Last Glacial to analyse changes in global fire regimes. Fire was consistently lower during the glacial than during the Eemian and Holocene. Within the glacial, Marine Isotope Stage (MIS) 3 is characterised globally by more fire than MIS 2. The signal for MIS 4 is less clear: there is more fire in the Northern Hemisphere and less fire in the Southern Hemisphere than during MIS 2 and 3. The records, most particularly records from the northern extratropics, show millennial-scale variability in fire regimes corresponding to the rapid climate changes associated with Dansgaard–Oeschger (D-O) cycles. Most of the D-O cycles during the Last Glacial and all of the Heinrich stadials are apparent in the composite global record of fire regime: fire increases during D-O warming events and decreases during intervals of rapid cooling. Our analyses show that fire regimes show a lagged response to rapid climate changes of ca 100–200 years in the case of D-O warming events, ca 0–100 years in the case of D-O cooling events and ca 200 years in the case of Heinrich Stadials. The Strong climatic variability experienced during the glacial resulted in important changes in fire regimes even though the base level of biomass burning was less than today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in fire regime at the continental scale has primarily been attributed to climate change, often overshadowing the widely potential impact of human activities. However, human ignition modifies the rhythm of fire episodes occurrence (fire frequency), whereas land use alters vegetation composition and fuel load, and thus the amount of biomass burned. It is unclear, however, whether and how humans have exercised a significant influence over fire regimes at continental and millennial scales. Based on sedimentary charcoal records, we use new alternative estimate of fire frequency and biomass burned for the last 16000 years (here after 16 ky) that we evaluate with outputs from climate, vegetation, land use and population models. We find that pronounced regional-scale land use changes in southern Europe at the beginning of the Neolithic (8–6 ky), during the Bronze Age (5–4 ky) and the medieval period (1 ky) caused a doubling of fire frequency compared to the Holocene average (the last 11.5 ky). Despite anthropogenic influences, southern European biomass burned decreased from 7 ky, which is in line both with changes in orbital parameters leading climate cooling and also reductions in biomass availability because of land use. Our study underscores the role of elevation-dependent parameters, and particularly biomass and land management, as major drivers of fire regime variability. Results attest a determinant anthropogenic driving-force on fire regime and a decrease in fire-carbon emissions since 7 ky in Southern Europe.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used a long-term fire experiment in south-east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil-stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 19711972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil-stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 37.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil-stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Beef cattle grazing is the dominant land use in the extensive tropical and sub-tropical rangelands of northern Australia. Despite the considerable knowledge on land and herd management gained from both research and practical experience, the adoption of improved management is limited by an inability to predict how changes in practices and combinations of practices will affect cattle production, economic returns and resource condition. To address these issues, past Australian and international research relating to four management factors that affect productivity and resource condition was reviewed in order to identify key management principles. The four management factors considered were stocking rates, pasture resting, prescribed fire, and fencing and water point development for managing grazing distribution. Four management principles for sound grazing management in northern Australia were formulated as follows: (1) manage stocking rates to meet goals for livestock production and land condition; (2) rest pastures to maintain them in good condition or to restore them from poor condition to increase pasture productivity; (3) devise and apply fire regimes that enhance the condition of grazing land and livestock productivity while minimising undesirable impacts; and (4) use fencing and water points to manipulate grazing distribution. Each principle is supported by several more specific guidelines. These principles and guidelines, and the supporting research on which they are based, are presented.

Relevância:

70.00% 70.00%

Publicador: